Read More
Date: 16-12-2020
681
Date: 23-2-2020
601
Date: 17-2-2020
657
|
is the number of integers for which the totient function , also called the multiplicity of (Guy 1994). Erdős (1958) proved that if a multiplicity occurs once, it occurs infinitely often.
The values of for , 2, ... are 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, ... (OEIS A014197), and the nonzero values are 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, ... (OEIS A058277), which occur for , 2, 4, 6, 8, 10, 12, 16, 18, 20, ... (OEIS A002202). The table below lists values for .
such that | ||
1 | 2 | 1, 2 |
2 | 3 | 3, 4, 6 |
4 | 4 | 5, 8, 10, 12 |
6 | 4 | 7, 9, 14, 18 |
8 | 5 | 15, 16, 20, 24, 30 |
10 | 2 | 11, 22 |
12 | 6 | 13, 21, 26, 28, 36, 42 |
16 | 6 | 17, 32, 34, 40, 48, 60 |
18 | 4 | 19, 27, 38, 54 |
20 | 5 | 25, 33, 44, 50, 66 |
22 | 2 | 23, 46 |
24 | 10 | 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 |
28 | 2 | 29, 58 |
30 | 2 | 31, 62 |
32 | 7 | 51, 64, 68, 80, 96, 102, 120 |
36 | 8 | 37, 57, 63, 74, 76, 108, 114, 126 |
40 | 9 | 41, 55, 75, 82, 88, 100, 110, 132, 150 |
42 | 4 | 43, 49, 86, 98 |
44 | 3 | 69, 92, 138 |
46 | 2 | 47, 94 |
48 | 11 | 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 |
The smallest such that has exactly 2, 3, 4, ... solutions are given by 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A007374). Including Carmichael's conjecture that has no solutions, the smallest such that has exactly 0, 1, 2, 3, 4, ... solutions are given by 3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A014573). A table listing the first value of with multiplicities up to 100 follows.
0 | 3 | 26 | 2560 | 51 | 4992 | 76 | 21840 |
2 | 1 | 27 | 384 | 52 | 17640 | 77 | 9072 |
3 | 2 | 28 | 288 | 53 | 2016 | 78 | 38640 |
4 | 4 | 29 | 1320 | 54 | 1152 | 79 | 9360 |
5 | 8 | 30 | 3696 | 55 | 6000 | 80 | 81216 |
6 | 12 | 31 | 240 | 56 | 12288 | 81 | 4032 |
7 | 32 | 32 | 768 | 57 | 4752 | 82 | 5280 |
8 | 36 | 33 | 9000 | 58 | 2688 | 83 | 4800 |
9 | 40 | 34 | 432 | 59 | 3024 | 84 | 4608 |
10 | 24 | 35 | 7128 | 60 | 13680 | 85 | 16896 |
11 | 48 | 36 | 4200 | 61 | 9984 | 86 | 3456 |
12 | 160 | 37 | 480 | 62 | 1728 | 87 | 3840 |
13 | 396 | 38 | 576 | 63 | 1920 | 88 | 10800 |
14 | 2268 | 39 | 1296 | 64 | 2400 | 89 | 9504 |
15 | 704 | 40 | 1200 | 65 | 7560 | 90 | 18000 |
16 | 312 | 41 | 15936 | 66 | 2304 | 91 | 23520 |
17 | 72 | 42 | 3312 | 67 | 22848 | 92 | 39936 |
18 | 336 | 43 | 3072 | 68 | 8400 | 93 | 5040 |
19 | 216 | 44 | 3240 | 69 | 29160 | 94 | 26208 |
20 | 936 | 45 | 864 | 70 | 5376 | 95 | 27360 |
21 | 144 | 46 | 3120 | 71 | 3360 | 96 | 6480 |
22 | 624 | 47 | 7344 | 72 | 1440 | 97 | 9216 |
23 | 1056 | 48 | 3888 | 73 | 13248 | 98 | 2880 |
24 | 1760 | 49 | 720 | 74 | 11040 | 99 | 26496 |
25 | 360 | 50 | 1680 | 75 | 27720 | 100 | 34272 |
It is thought that (i.e., the totient valence function never takes on the value 1), but this has not been proven. This assertion is called Carmichael's totient function conjecture and is equivalent to the statement that for all , there exists such that (Ribenboim 1996, pp. 39-40). Any counterexample must have more than digits (Schlafly and Wagon 1994; erroneously given as in Conway and Guy 1996).
REFERENCES:
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 155, 1996.
Erdős, P. "Some Remarks on Euler's -Function." Acta Math. 4, 10-19, 1958.
Ford, K. "The Distribution of Totients." Ramanujan J. 2, 67-151, 1998.
Ford, K. "The Distribution of Totients, Electron. Res. Announc. Amer. Math. Soc. 4, 27-34, 1998.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 94, 1994.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Schlafly, A. and Wagon, S. "Carmichael's Conjecture on the Euler Function is Valid Below ." Math. Comput. 63, 415-419, 1994.
Sloane, N. J. A. Sequences A002202/M0987, A007374/M1093, A014197, A014573, A058277, and A082695 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|