المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

Iterons
15-10-2018
ما هو الفرق في التكامل ما بين المعصوم وغير المعصوم أرجو التفصيل الدقيق في المسألة ؟
2023-08-06
Carbon NMR Spectroscopy
13-8-2018
Alkylation of Enolate Ions : Direct Alkylation
21-11-2019
الترجيع بقراءة القرآن
18-8-2016
الأهمية الاقتصادية للبشملة
2023-11-05

Totient Function  
  
764   03:53 مساءً   date: 28-8-2020
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : "The Euler Totient Function." §24.3.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York:...
Page and Part : ...


Read More
Date: 20-1-2021 833
Date: 13-8-2020 515
Date: 12-12-2020 1865

Totient Function

  TotientFunction

The totient function phi(n), also called Euler's totient function, is defined as the number of positive integers <=n that are relatively prime to (i.e., do not contain any factor in common with) n, where 1 is counted as being relatively prime to all numbers. Since a number less than or equal to and relatively prime to a given number is called a totative, the totient function phi(n) can be simply defined as the number of totatives of n. For example, there are eight totatives of 24 (1, 5, 7, 11, 13, 17, 19, and 23), so phi(24)=8.

The totient function is implemented in the Wolfram Language as EulerPhi[n].

The number n-phi(n) is called the cototient of n and gives the number of positive integers <=n that have at least one prime factor in common with n.

phi(n) is always even for n>=3. By convention, phi(0)=1, although the Wolfram Language defines EulerPhi[0] equal to 0 for consistency with its FactorInteger[0] command. The first few values of phi(n) for n=1, 2, ... are 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, ... (OEIS A000010). The totient function is given by the Möbius transform of 1, 2, 3, 4, ... (Sloane and Plouffe 1995, p. 22). phi(n) is plotted above for small n.

For a prime p,

 phi(p)=p-1,

(1)

since all numbers less than p are relatively prime to p. If m=p^alpha is a power of a prime, then the numbers that have a common factor with m are the multiples of pp2p, ..., (p^(alpha-1))p. There are p^(alpha-1) of these multiples, so the number of factors relatively prime to p^alpha is

phi(p^alpha) = p^alpha-p^(alpha-1)

(2)

= p^(alpha-1)(p-1)

(3)

= p^alpha(1-1/p).

(4)

Now take a general m divisible by p. Let phi_p(m) be the number of positive integers <=m not divisible by p. As before, p2p, ..., (m/p)p have common factors, so

phi_p(m) = m-m/p

(5)

= m(1-1/p).

(6)

Now let q be some other prime dividing m. The integers divisible by q are q2q, ..., (m/q)q. But these duplicate pq2pq, ..., (m/(pq))pq. So the number of terms that must be subtracted from phi_p to obtain phi_(pq) is

Deltaphi_q(m) = m/q-m/(pq)

(7)

= m/q(1-1/p),

(8)

and

phi_(pq)(m) = phi_p(m)-Deltaphi_q(m)

(9)

= m(1-1/p)-m/q(1-1/p)

(10)

= m(1-1/p)(1-1/q).

(11)

By induction, the general case is then

phi(n) = nproduct_(p|n)(1-1/p)

(12)

= n(1-1/(p_1))(1-1/(p_2))...(1-1/(p_r)),

(13)

where the product runs over all primes p dividing n. An interesting identity relating phi(n^k) to phi(n) is given by

 phi(n^k)=n^(k-1)phi(n)

(14)

(A. Olofsson, pers. comm., Dec. 30, 2004).

Another identity relates the divisors d of n to n via

 sum_(d|n)phi(d)=n.

(15)

The totient function is connected to the Möbius function mu(n) through the sum

 sum_(d)dmu(n/d)=phi(n),

(16)

where the sum is over the divisors of n, which can be proven by induction on n and the fact that mu(n) and phi(n) are multiplicative (Berlekamp 1968, pp. 91-93; van Lint and Nienhuys 1991, p. 123).

The totient function has the Dirichlet generating function

 sum_(n=1)^infty(phi(n))/(n^s)=(zeta(s-1))/(zeta(s))

(17)

for s>2 (Hardy and Wright 1979, p. 250).

The totient function satisfies the inequality

 phi(n)>=sqrt(n)

(18)

for all n except n=2 and n=6 (Kendall and Osborn 1965; Mitrinović and Sándor 1995, p. 9). Therefore, the only values of n for which phi(n)=2 are n=3, 4, and 6. In addition, for composite n,

 phi(n)<=n-sqrt(n)

(19)

(Sierpiński and Schinzel 1988; Mitrinović and Sándor 1995, p. 9).

TotientFunctionInequality

phi(n) also satisfies

 lim inf_(n->infty)phi(n)(lnlnn)/n=e^(-gamma),

(20)

where gamma is the Euler-Mascheroni constant. The values of n for which phi(n)<e^(-gamma)n/(lnlnn) are given by 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, ... (OEIS A100966).

The divisor function satisfies the congruence

nsigma(n) = 2 (mod phi(n))

(21)

= {0 (mod phi(n)) if phi(n)=2; 2 (mod phi(n)) otherwise

(22)

for all primes p>=5 and no composite with the exception of 4, 6, and 22, where sigma(n) is the divisor function. This fact was proved by Subbarao (1974), despite the implication to the contrary, "is it true for infinitely many composite n?," stated in Guy (1994, p. 92), a query subsequently removed from Guy (2004, p. 142). No composite solution is currently known to

 n-1=0 (mod phi(n))

(23)

(Honsberger 1976, p. 35).

A corollary of the Zsigmondy theorem leads to the following congruence,

 phi(a^n+b^n)=0 (mod n)

(24)

(Zsigmondy 1882, Moree 2004, Ruiz 2004ab).

The first few n for which

 phi(n)=phi(n+1)

(25)

are given by 1, 3, 15, 104, 164, 194, 255, 495, 584, 975, ... (OEIS A001274), which have common values phi(n)=1, 2, 8, 48, 80, 96, 128, 240, 288, 480, ... (OEIS A003275).

The only n<10^(10) for which

 phi(n)=phi(n+1)=phi(n+2)

(26)

is n=5186, giving

 phi(5186)=phi(5187)=phi(5188)=2^53^4

(27)

(Guy 2004, p. 139).

Values of phi(n) shared among n that are close together include

phi(25930) = phi(25935)=phi(25940)=phi(25942)

(28)

= 2^73^4

(29)

phi(404471) = phi(404473)=phi(404477)

(30)

= 2^83^25^27

(31)

(Guy 2004, p. 139). McCranie found an arithmetic progression of six numbers with equal totient functions,

 phi(583200)=phi(583230)=phi(583260)=phi(583290) 
 =phi(583320)=phi(583350)=155520,

(32)

as well as other progressions of six numbers starting at 1166400, 1749600, ... (OEIS A050518).

If the Goldbach conjecture is true, then for every positive integer m, there are primes p and q such that

 phi(p)+phi(q)=2m

(33)

(Guy 2004, p. 160). Erdős asked if this holds for p and q not necessarily prime, but this relaxed form remains unproven (Guy 2004, p. 160).

Guy (2004, p. 150) discussed solutions to

 phi(sigma(n))=n,

(34)

where sigma(n) is the divisor function. F. Helenius has found 365 such solutions, the first of which are 2, 8, 12, 128, 240, 720, 6912, 32768, 142560, 712800, ... (OEIS A001229).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "The Euler Totient Function." §24.3.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 826, 1972.

Beiler, A. H. Ch. 12 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Berlekamp, E. R. Algorithmic Coding Theory. New York: McGraw-Hill, 1968.

Cohen, G. L. and Segal, S. L. "A Note Concerning Those n for which phi(n)+1 Divides n." Fib. Quart. 27, 285-286, 1989.

Conway, J. H. and Guy, R. K. "Euler's Totient Numbers." The Book of Numbers. New York: Springer-Verlag, pp. 154-156, 1996.

Courant, R. and Robbins, H. "Euler's phi Function. Fermat's Theorem Again." §2.4.3 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 48-49, 1996.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Guy, R. K. "Euler's Totient Function," "Does phi(n) Properly Divide n-1," "Solutions of phi(m)=sigma(n)," "Carmichael's Conjecture," "Gaps Between Totatives," "Iterations of phi and sigma," "Behavior of phi(sigma(n)) and sigma(phi(n))." §B36-B42 in Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 138-151, 2004.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 115-116, 2003.

Helenius, F. Untitled. https://pweb.netcom.com/~fredh/phisigma/pslist.html.

Honsberger, R. Mathematical Gems II. Washington, DC: Math. Assoc. Amer., p. 35, 1976.

Jones, G. A. and Jones, J. M. "Euler's Function." Ch. 5 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 83-96, 1998.

Kendall, D. G. and Osborn, R. "Two Simple Lower Bounds for Euler's Function." Texas J. Sci. 17, 1965.

Mitrinović, D. S. and Sándor, J. Handbook of Number Theory. Dordrecht, Netherlands: Kluwer, 1995.

Moree, P. "Phi Function Congruence." 13 Oct 2004. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0410&L=nmbrthry&T=0&F=&S=&P=1222.

Nagell, T. "Relatively Prime Numbers. Euler's phi-Function." §8 in Introduction to Number Theory. New York: Wiley, pp. 23-26, 1951.

Niven, I. M.; Zuckerman, H. S.; and Montgomery, H. L. An Introduction to the Theory of Numbers, 5th ed. New York: Wiley, p. 51, 1991.

Perrot, J. 1811. Quoted in Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 126, 2005.

Ruiz, S. "A Congruence With the Euler Totient Function." 11 Oct 2004a. https://arxiv.org/abs/math.GM/0410241.

Ruiz, S. "Phi Function Congruence." 12 Oct 2004b. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0410&L=nmbrthry&T=0&F=&S=&P=834.

Séroul, R. "The Euler Phi Function." §2.7 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 14-15, 2000.

Shanks, D. "Euler's phi Function." §2.27 in Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 68-71, 1993.

Sierpiński, W. and Schinzel, A. Elementary Theory of Numbers, 2nd Eng. ed. Amsterdam, Netherlands: North-Holland, 1988.

Sloane, N. J. A. Sequences A000010/M0299, A001229, A001274/M2999, A002088/M1008, A003275/M1874, A050518, and A100966 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.

Subbarao, M. V. "On Two Congruences for Primality." Pacific J. Math. 52, 261-268, 1974.

van Lint, J. H. and Nienhuys, J. W. Discrete Wiskunde.9062333680 Academic Service, 1991.

Zsigmondy, K. "Zur Theorie der Potenzreste." Monatshefte für Math. u. Phys. 3, 265-284, 1882.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.