تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Legendre,s Formula
المؤلف:
Séroul, R.
المصدر:
Legendre,s Formula" and "Implementation of Legendre,s Formula." §8.7.1 and 8.7.2 in Programming for Mathematicians. Berlin: Springer-Verlag
الجزء والصفحة:
pp. 175-179
25-8-2020
764
Legendre's Formula
Legendre's formula counts the number of positive integers less than or equal to a number which are not divisible by any of the first
primes,
![]() |
(1) |
where is the floor function. Taking
, where
is the prime counting function, gives
![]() |
(2) |
Legendre's formula holds since one more than the number of primes in a range equals the number of integers minus the number of composites in the interval.
Legendre's formula satisfies the recurrence relation
![]() |
(3) |
Let , then
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
where is the totient function, and
![]() |
(9) |
where . If
, then
![]() |
(10) |
Note that is not practical for computing
for large arguments. A more efficient modification is Meissel's formula.
REFERENCES:
Séroul, R. "Legendre's Formula" and "Implementation of Legendre's Formula." §8.7.1 and 8.7.2 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 175-179, 2000.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
