Read More
Date: 26-1-2021
787
Date: 1-11-2020
489
Date: 22-9-2020
646
|
Legendre's formula counts the number of positive integers less than or equal to a number which are not divisible by any of the first primes,
(1) |
where is the floor function. Taking , where is the prime counting function, gives
(2) |
Legendre's formula holds since one more than the number of primes in a range equals the number of integers minus the number of composites in the interval.
Legendre's formula satisfies the recurrence relation
(3) |
Let , then
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
where is the totient function, and
(9) |
where . If , then
(10) |
Note that is not practical for computing for large arguments. A more efficient modification is Meissel's formula.
REFERENCES:
Séroul, R. "Legendre's Formula" and "Implementation of Legendre's Formula." §8.7.1 and 8.7.2 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 175-179, 2000.
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|