Read More
Date: 31-12-2019
635
Date: 9-8-2020
648
Date: 26-10-2020
1119
|
Legendre's formula counts the number of positive integers less than or equal to a number which are not divisible by any of the first primes,
(1) |
where is the floor function. Taking , where is the prime counting function, gives
(2) |
Legendre's formula holds since one more than the number of primes in a range equals the number of integers minus the number of composites in the interval.
Legendre's formula satisfies the recurrence relation
(3) |
Let , then
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
where is the totient function, and
(9) |
where . If , then
(10) |
Note that is not practical for computing for large arguments. A more efficient modification is Meissel's formula.
REFERENCES:
Séroul, R. "Legendre's Formula" and "Implementation of Legendre's Formula." §8.7.1 and 8.7.2 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 175-179, 2000.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل: شراكتنا مع المؤسّسات الرائدة تفتح آفاقًا جديدة للارتقاء بجودة التعليم الطبّي في العراق
|
|
|