Read More
Date: 2-9-2020
![]()
Date: 22-12-2019
![]()
Date: 24-11-2019
![]() |
The Kronecker symbol is an extension of the Jacobi symbol to all integers. It is variously written as
or
(Cohn 1980; Weiss 1998, p. 236) or
(Dickson 2005). The Kronecker symbol can be computed using the normal rules for the Jacobi symbol
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
plus additional rules for ,
![]() |
(4) |
and . The definition for
is variously written as
![]() |
(5) |
or
![]() |
(6) |
(Cohn 1980). Cohn's form "undefines" for singly even numbers
and
, probably because no other values are needed in applications of the symbol involving the binary quadratic form discriminants
of quadratic fields, where
and
always satisfies
.
The Kronecker symbol is implemented in the Wolfram Language as KroneckerSymbol[n, m].
The Kronecker symbol is a real number theoretic character modulo
, and is, in fact, essentially the only type of real primitive character (Ayoub 1963).
The illustration above and table below summarize for
, 2, ... and small
.
![]() |
OEIS | period | ![]() |
![]() |
A109017 | 24 | 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, ![]() ![]() ![]() |
![]() |
0 | 1, ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() |
4 | 1, 0, ![]() ![]() ![]() ![]() ![]() |
|
![]() |
3 | 1, ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
![]() |
8 | 1, 0, 1, 0, ![]() ![]() ![]() ![]() |
|
![]() |
A034947 | 1, 1, ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
0 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | ||
1 | 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... | |
2 | A091337 | 8 | 1, 0, ![]() ![]() ![]() ![]() |
3 | A091338 | 1, ![]() ![]() ![]() ![]() |
|
4 | A000035 | 2 | 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... |
5 | A080891 | 5 | 1, ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 24 | 1, 0, 0, 0, 1, 0, ![]() ![]() ![]() ![]() |
For values of corresponding to primitive Dirichlet
-series
, the period of
equals
. For
,
, ..., the periods of
are 0, 8, 3, 4, 0, 24, 7, 8, 0, 40, 11, 6, ... (OEIS A117888) and for
, 2, ... they are 1, 8, 0, 2, 5, 24, 0, 8, 3, 40, 0, 12, ... (OEIS A117889). Here, 0 indicates that the sequence is not periodic.
REFERENCES:
Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.
Cohn, H. Advanced Number Theory. New York: Dover, p. 35, 1980.
Dickson, L. E. "Kronecker's Symbol." §48 in Introduction to the Theory of Numbers. New York: Dover, p. 77, 1957.
Sloane, N. J. A. Sequences A000035/M0001, A034947, A080891, A091337, A091338, A109017, A117888, and A117889 in "The On-Line Encyclopedia of Integer Sequences."
Weiss, E. Algebraic Number Theory. New York: Dover, 1998.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|