Read More
Date: 18-8-2020
2286
Date: 20-5-2020
1007
Date: 27-1-2020
564
|
The Jacobi symbol, written or is defined for positive odd as
(1) |
where
(2) |
is the prime factorization of and is the Legendre symbol. (The Legendre symbol is equal to depending on whether is a quadratic residue modulo .) Therefore, when is a prime, the Jacobi symbol reduces to the Legendre symbol. Analogously to the Legendre symbol, the Jacobi symbol is commonly generalized to have value
(3) |
giving
(4) |
as a special case. Note that the Jacobi symbol is not defined for or even. The Jacobi symbol is implemented in the Wolfram Language as JacobiSymbol[n, m].
Use of the Jacobi symbol provides the generalization of the quadratic reciprocity theorem
(5) |
for and relatively prime odd integers with (Nagell 1951, pp. 147-148). Written another way,
(6) |
or
(7) |
The Jacobi symbol satisfies the same rules as the Legendre symbol
(8) |
(9) |
(10) |
(11) |
(12) |
(13) |
Bach and Shallit (1996) show how to compute the Jacobi symbol in terms of the simple continued fraction of a rational number .
REFERENCES:
Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, pp. 343-344, 1996.
Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, p. 189, 2000.
Guy, R. K. "Quadratic Residues. Schur's Conjecture." §F5 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 244-245, 1994.
Nagell, T. "Jacobi's Symbol and the Generalization of the Reciprocity Law." §42 in Introduction to Number Theory. New York: Wiley, pp. 145-149, 1951.
Riesel, H. "Jacobi's Symbol." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 281-284, 1994.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|