Read More
Date: 17-1-2021
![]()
Date: 17-12-2019
![]()
Date: 19-9-2020
![]() |
The number of digits
in the base-
representation of a number
is called the
-ary digit count for
. The digit count is implemented in the Wolfram Language as DigitCount[n, b, d].
The number of 1s in the binary representation of a number
, illustrated above, is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where is the greatest dividing exponent of 2 with respect to
. This is a special application of the general result that the power of a prime
dividing a factorial (Vardi 1991, Graham et al. 1994). Writing
for
, the number of 1s is also given by the recurrence relation
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
with , and by
![]() |
(5) |
where is the denominator of
![]() |
(6) |
For , 2, ..., the first few values are 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, ... (OEIS A000120; Smith 1966, Graham 1970, McIlroy 1974).
For a binary number, the count of 1s is equal to the digit sum
. The quantity
is called the parity of a nonnegative integer
.
and
satisfy the beautiful identities
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
where is the Euler-Mascheroni constant and
(OEIS A094640) is its "alternating analog" (Sondow 2005).
Let and
be the numbers of even and odd digits respectively of
. Then
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
where the latter (OEIS A096614) is transcendental (Borwein et al. 2004, pp. 14-15).
REFERENCES:
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Graham, R. L. "On Primitive Graphs and Optimal Vertex Assignments." Ann. New York Acad. Sci. 175, 170-186, 1970.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Factorial Factors." §4.4 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 111-115, 1994.
McIlroy, M. D. "The Number of 1's in Binary Integers: Bounds and Extremal Properties." SIAM J. Comput. 3, 255-261, 1974.
Sloane, N. J. A. Sequences A000120/M0105, A094640, A096614 in "The On-Line Encyclopedia of Integer Sequences."
Smith, N. "Problem B-82." Fib. Quart. 4, 374-365, 1966.
Sondow, J. "New Vacca-type Rational Series for Euler's Constant and its 'alternating' Analog ." 1 Aug 2005. https://arxiv.org/abs/math.NT/0508042.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 33, 2004. https://www.mathematicaguidebooks.org/.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 67, 1991.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 902, 2002.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|