Read More
Date: 30-5-2020
560
Date: 24-9-2020
578
Date: 7-10-2020
482
|
For , let and be integers with such that the Euclidean algorithm applied to and requires exactly division steps and such that is as small as possible satisfying these conditions. Then and , where is a Fibonacci number (Knuth 1998, p. 343).
Furthermore, the number of steps in the Euclidean algorithm never exceeds 5 times the number of digits in the smaller number. In fact, the bound 5 can be further reduced to , where is the golden ratio.
REFERENCES:
Honsberger, R. "A Theorem of Gabriel Lamé." Ch. 7 in Mathematical Gems II. Washington, DC: Math. Assoc. Amer., pp. 54-57, 1976.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|