المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

تكافؤ الجاذبية والتسارع
2023-07-02
جزر لانكرهانس Langerhans Islands
12-11-2018
الاتجاهات الحديثة فى علم الجغرافيا - الاتجاه السياسي
10-2-2020
Syllabic n
2024-10-22
شجرة إبراهيم أو كف مريم Chaste tree (Vltex angus-castus)
2023-04-14
النظم والانضباط.
25/12/2022

Siegel,s Theorem  
  
1031   03:21 مساءً   date: 12-7-2020
Author : Hardy, G. H
Book or Source : Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Page and Part : ...


Read More
Date: 26-7-2020 1139
Date: 5-6-2020 801
Date: 21-1-2021 659

Siegel's Theorem

There are at least two Siegel's theorems. The first states that an elliptic curve can have only a finite number of points with integer coordinates.

The second states that if xi is an algebraic number of degree r, then there is an A(xi) depending only on xi such that

 |xi-p/q|>(A(xi))/(q^(2r^(1/2)))

for all integer p and q (Landau 1970, pp. 37-56; Hardy 1999, p. 79).


REFERENCES:

Davenport, H. "Siegel's Theorem." Ch. 21 in Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, pp. 126-125, 1980.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Landau, E. Vorlesungen über Zahlentheorie, Vol. 3. New York: Chelsea, 1970.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.