Read More
Date: 9-3-2020
1426
Date: 24-1-2021
816
Date: 22-7-2020
690
|
The group of an elliptic curve which has been transformed to the form
is the set of -rational points, including the single point at infinity. The group law (addition) is defined as follows: Take 2 -rational points and . Now 'draw' a straight line through them and compute the third point of intersection (also a -rational point). Then
gives the identity point at infinity. Now find the inverse of , which can be done by setting giving .
This remarkable result is only a special case of a more general procedure. Essentially, the reason is that this type of elliptic curve has a single point at infinity which is an inflection point (the line at infinity meets the curve at a single point at infinity, so it must be an intersection of multiplicity three).
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|