Diophantus Property
A set of 
 distinct positive integers 
{a_1,...,a_m}" src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/Inline2.gif" style="height:15px; width:93px" /> satisfies the Diophantus property 
 of order 
 (a positive integer) if, for all 
, ..., 
 with 
,
	
		
			  | 
			
			 (1) 
			 | 
		
	
the 
s are integers. The set 
 is called a Diophantine 
-tuple.
Diophantine 1-doubles are abundant: (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (1, 8), (3, 8), (6, 8), (7, 9), (8, 10), (9, 11), ... (OEIS A050269 and A050270). Diophantine 1-triples are less abundant: (1, 3, 8), (2, 4, 12), (1, 8, 15), (3, 5, 16), (4, 6, 20), ... (OEIS A050273, A050274, and A050275).
Fermat found the smallest Diophantine 1-quadruple: 
{1,3,8,120}" src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/Inline11.gif" style="height:15px; width:76px" /> (Davenport and Baker 1969, Jones 1976). There are no others with largest term 
, and Davenport and Baker (1969) showed that if 
, 
, and 
 are all squares, then 
.
General 
 quadruples are
	
		
			 {F_(2n),F_(2n+2),F_(2n+4),4F_(2n+1)F_(2n+2)F_(2n+3),} " src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/NumberedEquation2.gif" style="height:15px; width:241px" /> | 
			
			 (2) 
			 | 
		
	
where 
 are Fibonacci numbers, and
	
		
			 {n,n+2,4n+4,4(n+1)(2n+1)(2n+3)}. " src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/NumberedEquation3.gif" style="height:15px; width:260px" /> | 
			
			 (3) 
			 | 
		
	
The quadruplet
	
		
			 {2F_(n-1),2F_(n+1),2F_n^3F_(n+1)F_(n+2),2F_(n+1)F_(n+2)F_(n+3)(2F_(n+1)^2-F_n^2)} " src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/NumberedEquation4.gif" style="height:21px; width:368px" /> | 
			
			 (4) 
			 | 
		
	
is 
 (Dujella 1996). Dujella (1993) showed there exist no Diophantine quadruples 
.
A longstanding conjecture is that no integer Diophantine quintuple exists (Gardner 1967, van Lint 1968, Davenport and Baker 1969, Kanagasabapathy and Ponnudurai 1975, Sansone 1976, Grinstead 1978).
Jones (1976) derived an infinite sequence of polynomials 
{x,x+2,c_1(x),c_2(x),...}" src="https://mathworld.wolfram.com/images/equations/DiophantusProperty/Inline21.gif" style="height:15px; width:177px" /> such that the product of any two consecutive polynomials, increased by 1, is the square of a polynomial. Letting 
, then the general 
 is given by the recurrence relation
	
		
			  | 
			
			 (5) 
			 | 
		
	
The first few 
 are
Letting 
 gives the sequence 
, 3, 8, 120, 1680, 23408, 326040, ... (OEIS A051047), for which 
 is 2, 5, 31, 449, 6271, 87361, ... (OEIS A051048).
REFERENCES:
Brown, E. "Sets in Which 
 is Always a Square." Math. Comput. 45, 613-620, 1985.
Davenport, H. and Baker, A. "The Equations 
 and 
." Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.
Diofant Aleksandriĭskiĭ. Arifmetika i kniga o mnogougol'nyh chislakh [Russian]. Moscow: Nauka, 1974.
Dujella, A. "Generalization of a Problem of Diophantus." Acta Arith. 65, 15-27, 1993.
Dujella, A. "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." Portugaliae Math. 52, 305-318, 1995.
Dujella, A. "Generalized Fibonacci Numbers and the Problem of Diophantus." Fib. Quart. 34, 164-175, 1996.
Dujella, A. "Diophantine 
-Tuples-Introduction." https://web.math.hr/~duje/intro.html.
Gardner, M. "Mathematical Diversions." Sci. Amer. 216, 124, 1967.
Grinstead, C. M. "On a Method of Solving a Class of Diophantine Equations." Math. Comput. 32, 936-940, 1978.
Hoggatt, V. E. Jr. and Bergum, G. E. "A Problem of Fermat and the Fibonacci Sequence." Fib. Quart. 15, 323-330, 1977.
Jones, B. W. "A Variation of a Problem of Davenport and Diophantus." Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.
Kanagasabapathy, P. and Ponnudurai, T. "The Simultaneous Diophantine Equations 
 and 
." Quart. J. Math. (Oxford) Ser. (2) 26, 275-278, 1975.
Morgado, J. "Generalization of a Result of Hoggatt and Bergum on Fibonacci Numbers." Portugaliae Math. 42, 441-445, 1983-1984.
Sansone, G. "Il sistema diofanteo 
, 
, 
." Ann. Mat. Pura Appl. 111, 125-151, 1976.
Sloane, N. J. A. Sequences A050269, A050269, A050273, A050274, A050275, A051047, and A051048 in "The On-Line Encyclopedia of Integer Sequences."
van Lint, J. H. "On a Set of Diophantine Equations." T. H.-Report 68-WSK-03. Department of Mathematics. Eindhoven, Netherlands: Technological University Eindhoven, 1968.
Referenced on Wolfram|Alpha: Diophantus Property
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة