Read More
Date: 3-6-2020
596
Date: 7-1-2021
528
Date: 26-5-2020
752
|
A set of distinct positive integers satisfies the Diophantus property of order (a positive integer) if, for all , ..., with ,
(1) |
the s are integers. The set is called a Diophantine -tuple.
Diophantine 1-doubles are abundant: (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (1, 8), (3, 8), (6, 8), (7, 9), (8, 10), (9, 11), ... (OEIS A050269 and A050270). Diophantine 1-triples are less abundant: (1, 3, 8), (2, 4, 12), (1, 8, 15), (3, 5, 16), (4, 6, 20), ... (OEIS A050273, A050274, and A050275).
Fermat found the smallest Diophantine 1-quadruple: (Davenport and Baker 1969, Jones 1976). There are no others with largest term , and Davenport and Baker (1969) showed that if , , and are all squares, then .
General quadruples are
(2) |
where are Fibonacci numbers, and
(3) |
The quadruplet
(4) |
is (Dujella 1996). Dujella (1993) showed there exist no Diophantine quadruples .
A longstanding conjecture is that no integer Diophantine quintuple exists (Gardner 1967, van Lint 1968, Davenport and Baker 1969, Kanagasabapathy and Ponnudurai 1975, Sansone 1976, Grinstead 1978).
Jones (1976) derived an infinite sequence of polynomials such that the product of any two consecutive polynomials, increased by 1, is the square of a polynomial. Letting , then the general is given by the recurrence relation
(5) |
The first few are
(6) |
|||
(7) |
|||
(8) |
Letting gives the sequence , 3, 8, 120, 1680, 23408, 326040, ... (OEIS A051047), for which is 2, 5, 31, 449, 6271, 87361, ... (OEIS A051048).
REFERENCES:
Brown, E. "Sets in Which is Always a Square." Math. Comput. 45, 613-620, 1985.
Davenport, H. and Baker, A. "The Equations and ." Quart. J. Math. (Oxford) Ser. 2 20, 129-137, 1969.
Diofant Aleksandriĭskiĭ. Arifmetika i kniga o mnogougol'nyh chislakh [Russian]. Moscow: Nauka, 1974.
Dujella, A. "Generalization of a Problem of Diophantus." Acta Arith. 65, 15-27, 1993.
Dujella, A. "Diophantine Quadruples for Squares of Fibonacci and Lucas Numbers." Portugaliae Math. 52, 305-318, 1995.
Dujella, A. "Generalized Fibonacci Numbers and the Problem of Diophantus." Fib. Quart. 34, 164-175, 1996.
Dujella, A. "Diophantine -Tuples-Introduction." https://web.math.hr/~duje/intro.html.
Gardner, M. "Mathematical Diversions." Sci. Amer. 216, 124, 1967.
Grinstead, C. M. "On a Method of Solving a Class of Diophantine Equations." Math. Comput. 32, 936-940, 1978.
Hoggatt, V. E. Jr. and Bergum, G. E. "A Problem of Fermat and the Fibonacci Sequence." Fib. Quart. 15, 323-330, 1977.
Jones, B. W. "A Variation of a Problem of Davenport and Diophantus." Quart. J. Math. (Oxford) Ser. (2) 27, 349-353, 1976.
Kanagasabapathy, P. and Ponnudurai, T. "The Simultaneous Diophantine Equations and ." Quart. J. Math. (Oxford) Ser. (2) 26, 275-278, 1975.
Morgado, J. "Generalization of a Result of Hoggatt and Bergum on Fibonacci Numbers." Portugaliae Math. 42, 441-445, 1983-1984.
Sansone, G. "Il sistema diofanteo , , ." Ann. Mat. Pura Appl. 111, 125-151, 1976.
Sloane, N. J. A. Sequences A050269, A050269, A050273, A050274, A050275, A051047, and A051048 in "The On-Line Encyclopedia of Integer Sequences."
van Lint, J. H. "On a Set of Diophantine Equations." T. H.-Report 68-WSK-03. Department of Mathematics. Eindhoven, Netherlands: Technological University Eindhoven, 1968.
Referenced on Wolfram|Alpha: Diophantus Property
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
قدم خدماتها لأكثر من (700) مستفيدة خلال شهر واحد.. مركز تابع لهيئة الصحة والتعليم الطبي في العتبة الحسينية يختتم المبادرة المجانية للكشف المبكر عن سرطان الثدي
|
|
|