Read More
Date: 19-12-2020
1114
Date: 2-1-2020
1001
Date: 27-12-2020
829
|
Consider the Lagrange interpolating polynomial
(1) |
through the points , where is the th prime. For the first few points, the polynomials are
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
So the first few values of , , , ..., are 2, 1, 1/2, , 1/8, , ... (OEIS A118210 and A118211).
Now consider the partial sums of these coefficients, namely 2, 3, 7/2, 10/3, 83/24, 203/60, 2459/720, ... (OEIS A118203 and A118204). As first noted by F. Magata in 1998, the sum appears to converge to the value 3.407069... (OEIS A092894), now known as Magata's constant.
REFERENCES:
Sloane, N. J. A. Sequences A092894, A118203, A118204, A118210, and A118210 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|