المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05


Euler-Mascheroni Constant  
  
1041   01:34 صباحاً   date: 3-2-2020
Author : Anastassow, T.
Book or Source :
Page and Part : ...


Read More
Date: 14-11-2020 666
Date: 18-5-2020 1752
Date: 6-10-2020 670

Euler-Mascheroni Constant  

The Euler-Mascheroni constant gamma, sometimes also called 'Euler's constant' or 'the Euler constant' (but not to be confused with the constant e=2.718281...) is defined as the limit of the sequence

gamma = lim_(n->infty)(sum_(k=1)^(n)1/k-lnn)

(1)

= lim_(n->infty)(H_n-lnn),

(2)

where H_n is a harmonic number (Graham et al. 1994, p. 278). It was first defined by Euler (1735), who used the letter C and stated that it was "worthy of serious consideration" (Havil 2003, pp. xx and 51). The symbol gamma was first used by Mascheroni (1790).

gamma has the numerical value

 gamma=0.577215664901532860606512090082402431042...

(3)

(OEIS A001620), and is implemented in the Wolfram Language as EulerGamma.

It is not known if this constant is irrational, let alone transcendental (Wells 1986, p. 28). The famous English mathematician G. H. Hardy is alleged to have offered to give up his Savilian Chair at Oxford to anyone who proved gamma to be irrational (Havil 2003, p. 52), although no written reference for this quote seems to be known. Hilbert mentioned the irrationality of gamma as an unsolved problem that seems "unapproachable" and in front of which mathematicians stand helpless (Havil 2003, p. 97). Conway and Guy (1996) are "prepared to bet that it is transcendental," although they do not expect a proof to be achieved within their lifetimes. If gamma is a simple fraction a/b, then it is known that b>10^(10000) (Brent 1977; Wells 1986, p. 28), which was subsequently improved by T. Papanikolaou to b>10^(242080) (Havil 2003, p. 97).

The Euler-Mascheroni constant continued fraction is given by [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852).

The Engel expansion of gamma is given by 2, 7, 13, 19, 85, 2601, 9602, 46268, 4812284, ... (OEIS A053977).

The Euler-Mascheroni constant arises in many integrals

gamma = -int_0^inftye^(-x)lnxdx

(4)

= -int_0^1lnln(1/x)dx

(5)

= int_0^infty(1/(1-e^(-x))-1/x)e^(-x)dx

(6)

= int_0^infty1/x(1/(1+x)-e^(-x))dx

(7)

(Whittaker and Watson 1990, p. 246). Integrals that give gamma in combination with other simple constants include

int_0^inftye^(-x^2)lnxdx = -1/4sqrt(pi)(gamma+2ln2)

(8)

int_0^inftye^(-x)(lnx)^2dx = gamma^2+1/6pi^2.

(9)

Double integrals include

 gamma=int_0^1int_0^1(x-1)/((1-xy)ln(xy))dxdy

(10)

(Sondow 2003, 2005; Borwein et al. 2004, p. 49). An interesting analog of equation (10) is given by

ln(4/pi) = sum_(n=1)^(infty)(-1)^(n-1)[1/n-ln((n+1)/n)]

(11)

= int_0^1int_0^1(x-1)/((1+xy)ln(xy))dxdy

(12)

= 0.241564...

(13)

(OEIS A094640; Sondow 2005).

gamma is also given by Mertens theorem

 e^gamma=lim_(n->infty)1/(lnp_n)product_(i=1)^n1/(1-1/(p_i)),

(14)

where the product is over primes p. By taking the logarithm of both sides, an explicit formula for gamma is obtained,

 gamma=lim_(x->infty)[sum_(p<=x)ln(1/(1-1/p))-lnlnx].

(15)

It is also given by series

 gamma=sum_(k=1)^infty[1/k-ln(1+1/k)]

(16)

due to Euler, which follows from equation (1) by first replacing lnn by ln(n+1), which works since

 lim_(n->infty)[ln(n+1)-lnn]=lim_(n->infty)ln(1+1/n)=0,

(17)

and then substituting the telescoping sum

 sum_(k=1)^nln(1+1/k)

(18)

for ln(n+1), which is its sum since again

(19)

obtaining

gamma =

(20)

=

(21)

which equals equation (◇).

Other series include

gamma =

(22)

=

(23)

(Gourdon and Sebah 2003, p. 3), where zeta(z) is the Riemann zeta function, and

(24)

(Vacca 1910, Gerst 1969), where lg is the logarithm to base 2 and |_x_| is the floor function. Nielsen (1897) earlier gave a series equivalent to (24),

(25)

To see the equivalence of (25) with (24), expand

 1/((2k+1)(2k+2))=1/(2k+1)-1/(2k+2)

(26)

and add

 0=-1/2+1/4+1/8+1/(16)+...

(27)

to Nielsen's equation to get Vacca's formula.

The sums

gamma =

(28)

=

(29)

(Gosper 1972, with k-j replacing the undefined i; Bailey and Crandall 2001) can be obtained from equation (24) by rewriting as a double series, then applying Euler's series transformation to each of these series and adding to get equation (29). Here, (n; k) is a binomial coefficient, and rearranging the conditionally convergent series is permitted because the plus and minus terms can first be grouped in pairs, the resulting series of positive numbers rearranged, and then the series ungrouped back to plus and minus terms.

The double series (28) is equivalent to Catalan's integral

(30)

To see the equivalence, expand 1/(1+x) in a geometric series, multiply by x^(2^n-1), and integrate termwise (Sondow and Zudilin 2003).

Other series for gamma include

(31)

(Flajolet and Vardi 1996), and

(32)

(Bailey 1988), which is an improvement over Sweeney (1963).

A rapidly converging limit for gamma is given by

gamma =

(33)

=

(34)

where B_k is a Bernoulli number (C. Stingley, pers. comm., July 11, 2003).

Another limit formula is given by

(35)

(P. Walker, pers. comm., Mar. 17, 2004). An even more amazing limit is given by

(36)

(B. Cloitre, pers. comm., Oct. 4, 2005), where zeta(z) is the Riemann zeta function.

Another connection with the primes was provided by Dirichlet's 1838 proof that the average number of divisors d(n)=sigma_0(n) of all numbers from 1 to n is asymptotic to

(37)

(Conway and Guy 1996). de la Vallée Poussin (1898) proved that, if a large number n is divided by all primes <=n, then the average amount by which the quotient is less than the next whole number is gamma.

An elegant identity for gamma is given by

(38)

where I_0(z) is a modified Bessel function of the first kind, K_0(z) is a modified Bessel function of the second kind, and

(39)

where H_n is a harmonic number (Borwein and Borwein 1987, p. 336; Borwein and Bailey 2003, p. 138). This gives an efficient iterative algorithm for gamma by computing

B_k = (B_(k-1)n^2)/(k^2)

(40)

A_k = 1/k((A_(k-1)n^2)/k+B_k)

(41)

U_k = U_(k-1)+A_k

(42)

V_k = V_(k-1)+B_k

(43)

with A_0=-lnnB_0=1U_0=A_0, and V_0=1 (Borwein and Bailey 2003, pp. 138-139).

Reformulating this identity gives the limit

(44)

(Brent and McMillan 1980; Trott 2004, p. 21).

Infinite products involving gamma also arise from the Barnes G-function with positive integer n. The cases G(2) and G(3) give

product_(n=1)^(infty)e^(-1+1/(2n))(1+1/n)^n = (e^(1+gamma/2))/(sqrt(2pi))

(45)

product_(n=1)^(infty)e^(-2+2/n)(1+2/n)^n = (e^(3+2gamma))/(2pi).

(46)

The Euler-Mascheroni constant is also given by the expressions

gamma =

(47)

= -psi_0(1),

(48)

where psi_0(x) is the digamma function (Whittaker and Watson 1990, p. 236),

(49)

(Whittaker and Watson 1990, p. 271), the antisymmetric limit form

 gamma=lim_(s->1^+)sum_(n=1)^infty(1/(n^s)-1/(s^n))

(50)

(Sondow 1998), and

 gamma=lim_(x->infty)[x-Gamma(1/x)]

(51)

(Le Lionnais 1983).

The difference between the nth convergent in equation (◇) and gamma is given by

 sum_(k=1)^n1/k-lnn-gamma=int_n^infty(x-|_x_|)/(x^2)dx,

(52)

where |_x_| is the floor function, and satisfies the inequality

 1/(2(n+1))<sum_(k=1)^n1/k-lnn-gamma<1/(2n)

(53)

(Young 1991).

The symbol gamma is sometimes also used for

(54)

(OEIS A073004; Gradshteyn and Ryzhik 2000, p. xxvii).

There is a the curious radical representation

 e^gamma=(2/1)^(1/2)((2^2)/(1·3))^(1/3)((2^3·4)/(1·3^3))^(1/4)((2^4·4^4)/(1·3^6·5))^(1/5)...,

(55)

which is related to the double series

 gamma=sum_(n=1)^infty1/nsum_(k=0)^(n-1)(-1)^(k+1)(n-1; k)ln(k+1)

(56)

and (n; k) a binomial coefficient (Ser 1926, Sondow 2003b, Guillera and Sondow 2005). Another proof of product (55) as well as an explanation for the resemblance between this product and the Wallis formula-like "faster product for pi

 pi/2=(2/1)^(1/2)((2^2)/(1·3))^(1/4)((2^3·4)/(1·3^3))^(1/8)((2^4·4^4)/(1·3^6·5))^(1/16)...

(57)

(Guillera and Sondow 2005, Sondow 2005), is given in Sondow (2004). (This resemblance which is made even clearer by changing n->n+1 in (57).) Both these formulas are also analogous to the product for e given by

 e=(2/1)^(1/1)((2^2)/(1·3))^(1/2)((2^3·4)/(1·3^3))^(1/3)((2^4·4^4)/(1·3^6·5))^(1/4)...

(58)

due to Guillera (Sondow 2005).

EulerMascheroniSondow

The values r(n) obtained after inclusion of the first n terms of the product for e^gamma are plotted above.

A curious sum limit converging to gamma is given by

(59)

(Havil 2003, p. 113), where [x] is the ceiling function.


REFERENCES:

Anastassow, T. Die Mascheroni'sche Konstante: Eine historisch-analytisch zusammenfassende Studie. Thesis. Bonn, Germany: Universität Bonn. Wetzikon: J. Wirz, 1914.

Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pie, and Euler's Constant." Math. Comput. 50, 275-281, 1988.

Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Borwein, J. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Brent, R. P. "Computation of the Regular Continued Fraction for Euler's Constant." Math. Comput. 31, 771-777, 1977.

Brent, R. P. and McMillan, E. M. "Some New Algorithms for High-Precision Computation of Euler's Constant." Math. Comput. 34, 305-312, 1980.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.

Conway, J. H. and Guy, R. K. "The Euler-Mascheroni Number." In The Book of Numbers. New York: Springer-Verlag, pp. 260-261, 1996.

de la Vallée Poussin, C.-J. Untitled communication. Annales de la Soc. Sci. Bruxelles 22, 84-90, 1898.

DeTemple, D. W. "A Quicker Convergence to Euler's Constant." Amer. Math. Monthly 100, 468-470, 1993.

Dirichlet, G. L. "Sur l'usage des séries infinies dans la théorie des nombres." J. reine angew. Math. 18, 259-274, 1838.

Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, p. 1, 1981.

Euler, L. "De Progressionibus harmonicus observationes." Commentarii Academiæ Scientarum Imperialis Petropolitanæ 7-1734, 150-161, 1735.

Finch, S. R. "Euler-Mascheroni Constant." §1.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 28-40, 2003.

Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript, 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.

Gerst, I. "Some Series for Euler's Constant." Amer. Math. Monthly 76, 273-275, 1969.

Glaisher, J. W. L. "On the History of Euler's Constant." Messenger Math. 1, 25-30, 1872.

Gosper, R. W. Item 120 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 55, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/series.html#item120.

Gourdon, X. and Sebah, P. "The Euler Constant: gamma." http://numbers.computation.free.fr/Constants/Gamma/gamma.html.

Gourdon, X. and Sebah, P. "A Collection of Formulae for the Euler Constant." Feb. 12, 2003. http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf.

Gourdon, X. and Sebah, P. "Constants and Records of Computation." http://numbers.computation.free.fr/Constants/Miscellaneous/Records.html.

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.

Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005. http://arxiv.org/abs/math.NT/0506319.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Kondo, S. "Value of Euler Constant." http://ja0hxv.calico.jp/pai/egamma.html.

Knuth, D. E. "Euler's Constant to 1271 Places." Math. Comput. 16, 275-281, 1962.

Krantz, S. G. "The Euler-Mascheroni Constant." §13.1.7 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 156-157, 1999.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 28, 1983.

Mascheroni, L. Adnotationes ad calculum integralem Euleri, Vol. 1 and 2. Ticino, Italy, 1790 and 1792. Reprinted in Euler, L. Leonhardi Euleri Opera Omnia, Ser. 1, Vol. 12. Leipzig, Germany: Teubner, pp. 415-542, 1915.

Nielsen, N. "Een Raekke for Euler's Konstant." Nyt. Tidss. for Math. 8B, 10-12, 1897.

Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.

Ser, J. "Sur une expression de la fonction zeta(s) de Riemann." C. R. Acad. Sci. Paris Sér. I Math. 182, 1075-1077, 1926.

Sloane, N. J. A. Sequences A001620/M3755, A033149, A053977, A073004, and A094640 in "The On-Line Encyclopedia of Integer Sequences."

Sondow, J. "An Antisymmetric Formula for Euler's Constant." Math. Mag. 71, 219-220, 1998.

Sondow, J. "Criteria for Irrationality of Euler's Constant." Proc. Amer. Math. Soc. 131, 3335-3344, 2003a.

Sondow, J. "An Infinite Product for e^gamma via Hypergeometric Formulas for Euler's Constant, gamma." 31 May 2003b. http://arxiv.org/abs/math.CA/0306008.

Sondow, J. "Double Integrals for Euler's Constant and ln(4/pi) and an Analog of Hadjicostas's Formula." Amer. Math. Monthly 112, 61-65, 2005a.

Sondow, J. "A Faster Product for pi and a New Integral for ln(pi/2)." Amer. Math. Monthly 112, 729-734, 2005b.

Sondow, J. and Zudilin, W. "Euler's Constant, q-Logarithms, and Formulas of Ramanujan and Gosper." Ramanujan J. 12, 225-244, 2006.

Sweeney, D. W. "On the Computation of Euler's Constant." Math. Comput. 17, 170-178, 1963.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.

Vacca, G. "A New Series for the Eulerian Constant." Quart. J. Pure Appl. Math. 41, 363-368, 1910.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 28, 1986.

Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 235-236, 246, and 271, 1990.

Young, R. M. "Euler's Constant." Math. Gaz. 75, 187-190, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.