

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Primitive Root
المؤلف:
Burgess, D. A.
المصدر:
"On Character Sums and L-Series." Proc. London Math. Soc. 12
الجزء والصفحة:
...
13-1-2020
3548
Primitive Root
A primitive root of a prime
is an integer
such that
(mod
) has multiplicative order
(Ribenboim 1996, p. 22). More generally, if
(
and
are relatively prime) and
is of multiplicative order
modulo
where
is the totient function, then
is a primitive root of
(Burton 1989, p. 187). The first definition is a special case of the second since
for
a prime.
A primitive root of a number
(but not necessarily the smallest primitive root for composite
) can be computed in the Wolfram Language using PrimitiveRoot[n].
If
has a primitive root, then it has exactly
of them (Burton 1989, p. 188), which means that if
is a prime number, then there are exactly
incongruent primitive roots of
(Burton 1989). For
, 2, ..., the first few values of
are 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, ... (OEIS A010554).
has a primitive root if it is of the form 2, 4,
, or
, where
is an odd prime and
(Burton 1989, p. 204). The first few
for which primitive roots exist are 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, ... (OEIS A033948), so the number of primitive root of order
for
, 2, ... are 0, 1, 1, 1, 2, 1, 2, 0, 2, 2, 4, 0, 4, ... (OEIS A046144).
The smallest primitive roots for the first few primes
are 1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, ... (OEIS A001918). Here is table of the primitive roots for the first few
for which a primitive root exists (OEIS A046147).
![]() |
![]() |
| 2 | 1 |
| 3 | 2 |
| 4 | 3 |
| 5 | 2, 3 |
| 6 | 5 |
| 7 | 3, 5 |
| 9 | 2, 5 |
| 10 | 3, 7 |
| 11 | 2, 6, 7, 8 |
| 13 | 2, 6, 7, 11 |
The largest primitive roots for
, 2, ..., are 0, 1, 2, 3, 3, 5, 5, 0, 5, 7, 8, 0, 11, ... (OEIS A046146). The smallest primitive roots for the first few integers
are given in the following table (OEIS A046145), which omits
when
does not exist.
| 2 | 1 | 38 | 3 | 94 | 5 | 158 | 3 |
| 3 | 2 | 41 | 6 | 97 | 5 | 162 | 5 |
| 4 | 3 | 43 | 3 | 98 | 3 | 163 | 2 |
| 5 | 2 | 46 | 5 | 101 | 2 | 166 | 5 |
| 6 | 5 | 47 | 5 | 103 | 5 | 167 | 5 |
| 7 | 3 | 49 | 3 | 106 | 3 | 169 | 2 |
| 9 | 2 | 50 | 3 | 107 | 2 | 173 | 2 |
| 10 | 3 | 53 | 2 | 109 | 6 | 178 | 3 |
| 11 | 2 | 54 | 5 | 113 | 3 | 179 | 2 |
| 13 | 2 | 58 | 3 | 118 | 11 | 181 | 2 |
| 14 | 3 | 59 | 2 | 121 | 2 | 191 | 19 |
| 17 | 3 | 61 | 2 | 122 | 7 | 193 | 5 |
| 18 | 5 | 62 | 3 | 125 | 2 | 194 | 5 |
| 19 | 2 | 67 | 2 | 127 | 3 | 197 | 2 |
| 22 | 7 | 71 | 7 | 131 | 2 | 199 | 3 |
| 23 | 5 | 73 | 5 | 134 | 7 | 202 | 3 |
| 25 | 2 | 74 | 5 | 137 | 3 | 206 | 5 |
| 26 | 7 | 79 | 3 | 139 | 2 | 211 | 2 |
| 27 | 2 | 81 | 2 | 142 | 7 | 214 | 5 |
| 29 | 2 | 82 | 7 | 146 | 5 | 218 | 11 |
| 31 | 3 | 83 | 2 | 149 | 2 | 223 | 3 |
| 34 | 3 | 86 | 3 | 151 | 6 | 226 | 3 |
| 37 | 2 | 89 | 3 | 157 | 5 | 227 | 2 |
Let
be any odd prime
, and let
![]() |
(1) |
Then
|
(2) |
(Ribenboim 1996, pp. 22-23). For numbers
with primitive roots, all
satisfying
are representable as
![]() |
(3) |
where
, 1, ...,
,
is known as the index, and
is an integer. Kearnes (1984) showed that for any positive integer
, there exist infinitely many primes
such that
![]() |
(4) |
Call the least primitive root
. Burgess (1962) proved that
![]() |
(5) |
for
and
positive constants and
sufficiently large (Ribenboim 1996, p. 24).
Matthews (1976) obtained a formula for the "two-dimensional" Artin's constants for the set of primes for which
and
are both primitive roots.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Primitive Roots." §24.3.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 827, 1972.
Burgess, D. A. "On Character Sums and
-Series." Proc. London Math. Soc. 12, 193-206, 1962.
Burton, D. M. "The Order of an Integer Modulo
," "Primitive Roots for Primes," and "Composite Numbers Having Primitive Roots." §8.1-8.3 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184-205, 1989.
Guy, R. K. "Primitive Roots." §F9 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 248-249, 1994.
Jones, G. A. and Jones, J. M. "Primitive Roots." §6.2 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 99-103, 1998.
Kearnes, K. "Solution of Problem 6420." Amer. Math. Monthly 91, 521, 1984.
Lehmer, D. H. "A Note on Primitive Roots." Scripta Math. 26, 117-119, 1961.
Matthews, K. R. "A Generalization of Artin's Conjecture for Primitive Roots." Acta Arith. 29, 113-146, 1976.
Nagell, T. "Moduli Having Primitive Roots." §32 in Introduction to Number Theory. New York: Wiley, pp. 107-111, 1951.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 22-25, 1996.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, p. 97, 1994.
Sloane, N. J. A. Sequences A001918/M0242, A010554, and A033948 in "The On-Line Encyclopedia of Integer Sequences."
Western, A. E. and Miller, J. C. P. Tables of Indices and Primitive Roots. Cambridge, England: Cambridge University Press, pp. xxxvii-xlii, 1968.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية







قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)