Read More
Date: 19-1-2020
![]()
Date: 2-2-2021
![]()
Date: 18-12-2019
![]() |
Let be a subgroup of the modular group Gamma. Then an open subset
of the upper half-plane
is called a fundamental region of
if
1. No two distinct points of are equivalent under
,
2. If , then there is a point
in the closure of
such that
is equivalent to
under
.
A fundamental region of the modular group Gamma is given by
such that
and
, illustrated above, where
is the complex conjugate of
(Apostol 1997, p. 31). Borwein and Borwein (1987, p. 113) define the boundaries of the region slightly differently by including the boundary points with
.
REFERENCES:
Apostol, T. M. "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 30-34, 1997.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-113, 1987.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|