Read More
Date: 3-2-2021
1192
Date: 24-4-2020
771
Date: 9-6-2020
602
|
Let be a subgroup of the modular group Gamma. Then an open subset of the upper half-plane is called a fundamental region of if
1. No two distinct points of are equivalent under ,
2. If , then there is a point in the closure of such that is equivalent to under .
A fundamental region of the modular group Gamma is given by such that and , illustrated above, where is the complex conjugate of (Apostol 1997, p. 31). Borwein and Borwein (1987, p. 113) define the boundaries of the region slightly differently by including the boundary points with .
REFERENCES:
Apostol, T. M. "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 30-34, 1997.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-113, 1987.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|