Fundamental Region
المؤلف:
Apostol, T. M
المصدر:
"Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
23-12-2019
1135
Fundamental Region
Let
be a subgroup of the modular group Gamma. Then an open subset
of the upper half-plane
is called a fundamental region of
if
1. No two distinct points of
are equivalent under
,
2. If
, then there is a point
in the closure of
such that
is equivalent to
under
.

A fundamental region
of the modular group Gamma is given by
such that
and
, illustrated above, where
is the complex conjugate of
(Apostol 1997, p. 31). Borwein and Borwein (1987, p. 113) define the boundaries of the region slightly differently by including the boundary points with
.
REFERENCES:
Apostol, T. M. "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 30-34, 1997.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-113, 1987.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة