تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Eisenstein Series
المؤلف:
Bump, D
المصدر:
Automorphic Forms and Representations. Cambridge, England: Cambridge University Press
الجزء والصفحة:
...
22-12-2019
1934
Eisenstein Series
An Eisenstein series with half-period ratio and index
is defined by
![]() |
(1) |
where the sum excludes
,
, and
is an integer (Apostol 1997, p. 12).
The Eisenstein series satisfies the remarkable property
![]() |
(2) |
if the matrix is in the special linear group
(Serre 1973, pp. 79 and 83). Therefore,
is a modular form of weight
(Serre 1973, p. 83).
Furthermore, each Eisenstein series is expressible as a polynomial of the elliptic invariants and
of the Weierstrass elliptic function with positive rational coefficients (Apostol 1997).
The Eisenstein series satisfy
![]() |
(3) |
where is the Riemann zeta function and
is the divisor function (Apostol 1997, pp. 24 and 69). Writing the nome
as
![]() |
(4) |
where is a complete elliptic integral of the first kind,
,
is the elliptic modulus, and defining
![]() |
(5) |
we have
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
where
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where is a Bernoulli number. For
, 2, ..., the first few values of
are
, 240,
, 480, -264,
, ... (OEIS A006863 and A001067).
The first few values of are therefore
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
(Apostol 1997, p. 139). Ramanujan used the notations ,
, and
, and these functions satisfy the system of differential equations
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
(Nesterenko 1999), where is the differential operator.
can also be expressed in terms of complete elliptic integrals of the first kind
as
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
(Ramanujan 1913-1914), where is the elliptic modulus. Ramanujan used the notation
and
to refer to
and
, respectively.
Pretty formulas are given by
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
where is a Jacobi theta function.
The following table gives the first few Eisenstein series for even
.
![]() |
OEIS | lattice | ![]() |
2 | A006352 | ![]() |
|
4 | A004009 | ![]() |
![]() |
6 | A013973 | ![]() |
|
8 | A008410 | ![]() |
![]() |
10 | A013974 | ![]() |
The notation is sometimes used to refer to the closely related function
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
(OEIS A103640), where is a Jacobi elliptic function and
![]() |
(30) |
is the odd divisor function (Ramanujan 2000, p. 32).
REFERENCES:
Apostol, T. M. "The Eisenstein Series and the Invariants and
" and "The Eisenstein Series
." §1.9 and 3.10 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 12-13 and 69-71, 1997.
Borcherds, R. E. "Automorphic Forms on and Generalized Kac-Moody Algebras." In Proc. Internat. Congr. Math., Vol. 2. pp. 744-752, 1994.
Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for ." J. Comput. Appl. Math. 46, 281-290, 1993.
Bump, D. Automorphic Forms and Representations. Cambridge, England: Cambridge University Press, p. 29, 1997.
Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, pp. 119 and 123, 1993.
Coxeter, H. S. M. "Integral Cayley Numbers."The Beauty of Geometry: Twelve Essays. New York: Dover, pp. 20-39, 1999.
Gunning, R. C. Lectures on Modular Forms. Princeton, NJ: Princeton Univ. Press, p. 53, 1962.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 166, 1999.
Milne, S. C. "Hankel Determinants of Eisenstein Series." 13 Sep 2000. http://arxiv.org/abs/math.NT/0009130.
Nesterenko, Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. Unpublished manuscript. 1999.
Ramanujan, S. "Modular Equations and Approximations to ." Quart. J. Pure Appl. Math. 45, 350-372, 1913-1914.
Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.
Serre, J.-P. A Course in Arithmetic. New York: Springer-Verlag, 1973.
Shimura, G. Euler Products and Eisenstein Series. Providence, RI: Amer. Math. Soc., 1997.
Sloane, N. J. A. Sequences A001067, A004009/M5416, A006863/M5150, A008410, A013973, A013974, and A103640 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
