تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Chebotarev Density Theorem
المؤلف:
Lenstra, H.
المصدر:
"The Chebotarev Density Theorem." http://websites.math.leidenuniv.nl/algebra/Lenstra-Chebotarev.pdf.
الجزء والصفحة:
...
16-10-2019
1025
Chebotarev Density Theorem
The Chebotarev density theorem is a complicated theorem in algebraic number theory which yields an asymptotic formula for the density of prime ideals of a number field that split in a certain way in an algebraic extension
of
. When the base field is the field
of rational numbers, the theorem becomes much simpler.
Let be a monic irreducible polynomial of degree
with integer coefficients with root
, let
, let
be the normal closure of
, and let
be a partition
of
, i.e., an ordered set of positive integers
with
. A prime is said to be unramified (over the number field
) if it does not divide the discriminant of
. Let
denote the set of unramified primes. Consider the set
of unramified primes for which
factors as
modulo
, where
is irreducible modulo
and has degree
. Also define the density
of primes in
as follows:
Now consider the Galois group of the number field
. Since this is a subgroup of the symmetric group
, every element of
can be represented as a permutation of
letters, which in turn has a unique representation as a product of disjoint cycles. Now consider the set of elements
of
consisting of disjoint cycles of length
,
, ...,
. Then
.
As an example, let , so
and
, where
is a primitive root of unity. Since
has discriminant
, the only ramified primes are 2 and 3.
Let be an unramified prime. Then
has a root (mod
) if and only if 2 has a cube root (mod
), which occurs whenever
(mod 3) or
(mod 3) and 2 has multiplicative order modulo
dividing
. The first case occurs for half of all unramified primes and the second case occurs for one sixth of all primes. In the first case, 2 has a unique cube root modulo
, so
factors as the product of a linear and an irreducible quadratic factor mod
. In the second case, 2 has three distinct cube roots mod
, so
has three linear factors mod
. In the remaining case, which occurs for 1/3 of all unramified primes,
is irreducible mod
. Now consider the corresponding elements of
. The first case corresponds to products of 2-cycles and 1-cycles (the identity), of which there are three, or half of the elements of
, the second case corresponds to products of three 1-cycles, or the identity, of which there is just one element, or one sixth of the elements of
, and the remaining case corresponds to 3-cycles, of which there are two, or one third the elements of
. Since
in this case, the Chebotarev density theorem holds for this example.
The Chebotarev density theorem can often be used to determine the Galois group of a given irreducible polynomial of degree
. To do so, count the number of unramified primes up to a specified bound for which
factors in a certain way and then compare the results with the fractions of elements of each of the transitive subgroups of
with the same cyclic structure. Lenstra provides some good examples of this procedure.
REFERENCES:
Lenstra, H. "The Chebotarev Density Theorem." http://websites.math.leidenuniv.nl/algebra/Lenstra-Chebotarev.pdf.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
