Read More
Date: 22-5-2019
![]()
Date: 10-8-2019
![]()
Date: 24-9-2018
![]() |
The Lommel polynomials arise from the equation
![]() |
(1) |
where is a Bessel function of the first kind and
is a complex number (Watson 1966, p. 294). The function is given for
by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where is a gamma function,
is a Bessel function of the first kind, and
is a generalized hypergeometric function. Since (1) must reduce to the usual recurrence formula for Bessel functions, it follows that
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
REFERENCES:
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1477, 1980.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, p. 294, 1966.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|