Read More
Date: 5-7-2018
![]()
Date: 3-7-2018
![]()
Date: 24-5-2018
![]() |
There are at least two integrals called the Poisson integral. The first is also known as Bessel's second integral,
![]() |
(1) |
where is a Bessel function of the first kind and
is a gamma function. It can be derived from Sonine's integral. With
, the integral becomes Parseval's integral.
In complex analysis, let be a harmonic function on a neighborhood of the closed disk
, then for any point
in the open disk
,
![]() |
(2) |
In polar coordinates on ,
![]() |
(3) |
where and
is the Poisson kernel. For a circle,
![]() |
(4) |
For a sphere,
![]() |
(5) |
where
![]() |
(6) |
REFERENCES:
Krantz, S. G. "The Poisson Integral." §7.3.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 92-93, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 373-374, 1953.
|
|
هدر الطعام في رمضان.. أرقام وخسائر صادمة
|
|
|
|
|
كالكوبرا الباصقة.. اكتشاف عقرب نادر يرش السم لمسافات بعيدة
|
|
|
|
|
في مدينة الحلة الفيحاء .. الأمانة العامة للعتبة الكاظمية تحتفي بميلاد الإمام الحسن
|
|
|