تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Separation of Variables
المؤلف:
Arfken, G
المصدر:
"Separation of Variables" and "Separation of Variables--Ordinary Differential Equations." §2.6 and §8.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة:
...
5-7-2018
2147
For an ordinary differential equation
![]() |
(1) |
where is nonzero in a neighborhood of the initial value, the solution is given implicitly by
![]() |
(2) |
If the integrals can be done in closed form and the resulting equation can be solved for (which are two pretty big "if"s), then a complete solution to the problem has been obtained. The most important equation for which this technique applies is
, the equation for exponential growth and decay (Stewart 2001).
For a partial differential equation in a function and variables
,
, ..., separation of variables can be applied by making a substitution of the form
![]() |
(3) |
breaking the resulting equation into a set of independent ordinary differential equations, solving these for ,
, ..., and then plugging them back into the original equation.
This technique works because if the product of functions of independent variables is a constant, each function must separately be a constant. Success requires choice of an appropriate coordinate system and may not be attainable at all depending on the equation. Separation of variables was first used by L'Hospital in 1750. It is especially useful in solving equations arising in mathematical physics, such as Laplace's equation, the Helmholtz differential equation, and the Schrödinger equation.
REFERENCES:
Arfken, G. "Separation of Variables" and "Separation of Variables--Ordinary Differential Equations." §2.6 and §8.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 111-117 and 448-451, 1985.
Bateman, H. Partial Differential Equations of Mathematical Physics. New York: Dover, 1944.
Brown, J. W. and Churchill, R. V. Fourier Series and Boundary Value Problems, 5th ed. New York: McGraw-Hill, 1993.
Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, 1959.
Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989.
Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 2. New York: Wiley, 1989.
Eisenhart, L. P. "Separable Systems in Euclidean 3-Space." Physical Review 45, 427-428, 1934.
Eisenhart, L. P. "Separable Systems of Stäckel." Ann. Math. 35, 284-305, 1934.
Eisenhart, L. P. "Potentials for Which Schroedinger Equations Are Separable." Phys. Rev. 74, 87-89, 1948.
Frank, P. and Mises, R. von. Die Differential- und Integralgleichungen der Mechanik und Physik, 8th ed., erster mathematischer Teil. Braunschweig, Germany: Vieweg, 1930.
Frank, P. and Mises, R. von. Die Differential- und Integralgleichungen der Mechanik und Physik, 8th ed., zweiter physikalischer Teil. Braunschweig, Germany: Vieweg, 1930.
Hildebrand, F. B. Advanced Calculus for Engineers. Englewood Cliffs, NJ: Prentice-Hall, 1949.
Jeffreys, S. H. and Jeffreys, B. S. Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, 1988.
Kellogg, O. D. Foundations of Potential Theory. New York: Dover, 1953.
Lense, J. Reihenentwicklungen in der mathematischen Physik. Berlin: de Gruyter, 1933.
Maxwell, J. C. A Treatise on Electricity and Magnetism, Vol. 1, unabridged 3rd ed. New York: Dover, 1954.
Maxwell, J. C. A Treatise on Electricity and Magnetism, Vol. 2, unabridged 3rd ed. New York: Dover, 1954.
Miller, W. Jr. Symmetry and Separation of Variables. Reading, MA: Addison-Wesley, 1977.
Moon, P. and Spencer, D. E. "Separability Conditions for the Laplace and Helmholtz Equations." J. Franklin Inst. 253, 585-600, 1952.
Moon, P. and Spencer, D. E. "Theorems on Separability in Riemannian n-space." Proc. Amer. Math. Soc. 3, 635-642, 1952.
Moon, P. and Spencer, D. E. "Recent Investigations of the Separation of Laplace's Equation." Proc. Amer. Math. Soc. 4, 302-307, 1953.
Moon, P. and Spencer, D. E. "Separability in a Class of Coordinate Systems." J. Franklin Inst. 254, 227-242, 1952.
Moon, P. and Spencer, D. E. Field Theory for Engineers. Princeton, NJ: Van Nostrand, 1961.
Moon, P. and Spencer, D. E. "Eleven Coordinate Systems." §1 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 1-48, 1988.
Morse, P. M. and Feshbach, H. "Separable Coordinates" and "Table of Separable Coordinates in Three Dimensions." §5.1 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 464-523 and 655-666, 1953.
Murnaghan, F. D. Introduction to Applied Mathematics. New York: Wiley, 1948.
Smythe, W. R. Static and Dynamic Electricity, 3rd ed., rev. pr. New York: Hemisphere, 1989.
Sommerfeld, A. Partial Differential Equations in Physics. New York: Academic Press, 1964.
Stewart, J. Calculus: Concepts and Contexts, 2nd ed. Brooks/Cole, 2001.
Weber, E. Electromagnetic Fields: Theory and Applications. New York: Wiley, 1950.
Webster, A. G. Partial Differential Equations of Mathematical Physics, 2nd corr. ed. New York: Dover, 1955.