1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : المعادلات التفاضلية و التكاملية : معادلات تفاضلية :

Frobenius Method

المؤلف:  Arfken, G

المصدر:  Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press

الجزء والصفحة:  ...

12-6-2018

2200

Frobenius Method

If x_0 is an ordinary point of the ordinary differential equation, expand y in a Taylor series about x_0. Commonly, the expansion point can be taken as x_0=0, resulting in the Maclaurin series

 y=sum_(n=0)^inftya_nx^n.

(1)

Plug y back into the ODE and group the coefficients by power. Now, obtain a recurrence relation for the nth term, and write the series expansion in terms of the a_ns. Expansions for the first few derivatives are

y = sum_(n=0)^(infty)a_nx^n

(2)

= sum_(n=1)^(infty)na_nx^(n-1)

(3)

= sum_(n=0)^(infty)(n+1)a_(n+1)x^n

(4)

= sum_(n=2)^(infty)n(n-1)a_nx^(n-2)

(5)

= sum_(n=0)^(infty)(n+2)(n+1)a_(n+2)x^n.

(6)

If x_0 is a regular singular point of the ordinary differential equation,

(7)

solutions may be found by the Frobenius method or by expansion in a Laurent series. In the Frobenius method, assume a solution of the form

 y=x^ksum_(n=0)^inftya_nx^n,

(8)

so that

y = x^ksum_(n=0)^(infty)a_nx^n

(9)

= sum_(n=0)^(infty)a_nx^(n+k)

(10)

= sum_(n=0)^(infty)a_n(n+k)x^(k+n-1)

(11)

= sum_(n=0)^(infty)a_n(n+k)(n+k-1)x^(k+n-2).

(12)

Now, plug y back into the ODE and group the coefficients by power to obtain a recursion formula for the a_nth term, and then write the series expansion in terms of the a_ns. Equating the a_0 term to 0 will produce the so-called indicial equation, which will give the allowed values of k in the series expansion.

As an example, consider the Bessel differential equation

 x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-m^2)y=0.

(13)

Plugging (◇) into (◇) yields

 sum_(n=0)^infty(k+n)(k+n-1)a_nx^(k+n)+sum_(n=0)^infty(k+n)a_nx^(k+n) 
 +sum_(n=2)^inftya_(n-2)x^(k+n)-m^2sum_(n=0)^inftya_nx^(n+k)=0.

(14)

The indicial equation, obtained by setting n=0, is then

 a_0[k(k-1)+k-m^2]=a_0(k^2-m^2)=0.

(15)

Since a_0 is defined as the first nonzero term, k^2-m^2=0, so k=+/-m. For illustration purposes, ignore k=-m and consider only the case k=m (avoiding the special case m!=1/2), then equation (14) requires that

 a_1(2m+1)=0

(16)

(so a_1=0) and

 [a_nn(2m+n)+a_(n-2)]x^(m+n)=0

(17)

for n=2, 3, ..., so

 a_n=-1/(n(2m+n))a_(n-2)

(18)

for n>1. Plugging back in to (◇), rearranging, and simplifying then gives the series solution that defined the Bessel function of the first kind J_m(x), which is the nonsingular solution to (◇). (Considering the case m=-k proceeds analogously and results in the solution J_(-m)(x)=(-1)^mJ_m(x).)

Fuchs's theorem guarantees that at least one power series solution will be obtained when applying the Frobenius method if the expansion point is an ordinary, or regular, singular point. For a regular singular point, a Laurent seriesexpansion can also be used. Expand y in a Laurent series, letting

 y=c_(-n)x^(-n)+...+c_(-1)x^(-1)+c_0+c_1x+...+c_nx^n+....

(19)

Plug y back into the ODE and group the coefficients by power. Now, obtain a recurrence formula for the c_nth term, and write the Taylor series in terms of the c_ns.


REFERENCES:

Arfken, G. "Series Solutions--Frobenius' Method." §8.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 454-467, 1985.

Frobenius. "Ueber die Integration der linearen Differentialgleichungen durch Reihen." J. reine angew. Math. 76, 214-235, 1873.

Ince, E. L. Ch. 5 in Ordinary Differential Equations. New York: Dover, 1956.

EN

تصفح الموقع بالشكل العمودي