Read More
Date: 10-12-2018
1062
Date: 30-10-2018
897
Date: 9-1-2018
883
|
Atomic Number | 17 |
Atomic Weight | 35.457 |
Electron Configuration | [Na]3s23p5 |
1st Ionization Energy | 1251 kJ/mol |
Ionic Radius | 181 pm |
Density (Dry Gas) | 3.2 g/L |
Melting Point | -101°C |
Boiling Point | -34.05°C |
Specific Heat | 0.23 g cal/g/°C |
Heat of Vaporization | 68 g cal/g |
Heat of Fusion | 22 g cal/g |
Critical Temperature |
114°C |
StandardElectron Potential Cl2+2e−→2Cl− 1.358V |
At room temperature, pure chlorine is a yellow-green gas. Chlorine is easily reduced, making it a good oxidation agent. By itself, it is not combustible, but many of its reactions with different compounds are exothermic and produce heat. Because chlorine is so highly reactive, it is found in nature in a combined state with other elements, such as NaCl (common salt) or KCl (sylvite). It forms strong ionic bonds with metal ions.
Like fluorine and the other members of the halogen family, chlorine is diatomic in nature, occurring as Cl2 rather than Cl. It forms -1 ions in ionic compounds with most metals. Perhaps the best known compound of that type is sodium chloride, common table salt (NaCl).
Small amounts of chlorine can be produced in the lab by oxidizing HCl with MnO2. On an industrial scale, chlorine is produced by electrolysis of brines or even sea water. Sodium hydroxide (also in high demand) is a by-product of the process.
In addition to the ionic compounds that chlorine forms with metals, it also forms molecular compounds with non-metals such as sulfur and oxygen. There are four different oxides of the element. Hydrogen chloride gas (from which we get hydrochloric acid) is an important industrial product.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
جامعة كربلاء: مشاريع العتبة العباسية الزراعية أصبحت مشاريع يحتذى بها
|
|
|