Stability Matrix
المؤلف:
Tabor, M
المصدر:
"Linear Stability Analysis." §1.4 in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley
الجزء والصفحة:
...
5-7-2018
955
Stability Matrix
Given a system of two ordinary differential equations
let
and
denote fixed points with
, so
Then expand about
so
To first-order, this gives
![d/(dt)[deltax; deltay]=[f_x(x_0,y_0) f_y(x_0,y_0); g_x(x_0,y_0) g_y(x_0,y_0)][deltax; deltay],](http://mathworld.wolfram.com/images/equations/StabilityMatrix/NumberedEquation1.gif) |
(7)
|
where the
matrix, or its generalization to higher dimension, is called the stability matrix. Analysis of the eigenvalues (and eigenvectors) of the stability matrix characterizes the type of fixed point.
REFERENCES:
Tabor, M. "Linear Stability Analysis." §1.4 in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, pp. 20-31, 1989.
الاكثر قراءة في معادلات تفاضلية
اخر الاخبار
اخبار العتبة العباسية المقدسة