Read More
Date: 22-6-2018
1674
Date: 26-12-2018
904
Date: 26-12-2018
939
|
Following the work of Fuchs in classifying first-order ordinary differential equations, Painlevé studied second-order ordinary differential equation of the form
where is analytic in and rational in and Painlevé found 50 types whose only movable singularities are ordinary poles. This characteristic is known as the Painlevé property. Six of the transcendents define new transcendents known as Painlevé transcendents, and the remaining 44 can be integrated in terms of classical transcendents, quadratures, or the Painlevé transcendents.
REFERENCES:
Slavyanov, S. Yu. and Lay, W. "Painlevé Property." §5.1 in Special Functions: A Unified Theory Based on Singularities. Oxford, England: Oxford University Press, pp. 232-236, 2000.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|