Read More
Date: 11-6-2018
![]()
Date: 30-5-2018
![]()
Date: 23-6-2018
![]() |
Overdamped simple harmonic motion is a special case of damped simple harmonic motion
![]() |
(1) |
in which
![]() |
(2) |
Therefore
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where
![]() |
(6) |
The general solution is therefore
![]() |
(7) |
where and
are constants. The initial values are
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
so
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
The above plot shows an overdamped simple harmonic oscillator with ,
and three different initial conditions
.
For a cosinusoidally forced overdamped oscillator with forcing function , i.e.,
![]() |
(12) |
the general solutions are
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
where
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
These give the identities
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
and
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
We can now use variation of parameters to obtain the particular solution as
![]() |
(21) |
where
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
and the Wronskian is
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
These can be integrated directly to give
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
Integrating, plugging in, and simplifying then gives
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
where use has been made of the harmonic addition theorem and
![]() |
(30) |
REFERENCES:
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 527-528, 1984.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|