Read More
Date: 21-5-2018
![]()
Date: 5-7-2018
![]()
Date: 23-12-2018
![]() |
Let be a real or complex piecewise-continuous function defined for all values of the real variable
and that is periodic with minimum period
so that
![]() |
(1) |
Then the differential equation
![]() |
(2) |
has two continuously differentiable solutions and
, and the characteristic equation is
![]() |
(3) |
with eigenvalues and
. Then Floquet's theorem states that if the roots
and
are different from each other, then (2) has two linearly independent solutions
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where and
are periodic with period
(Magnus and Winkler 1979, p. 4).
REFERENCES:
Magnus, W. and Winkler, S. "Floquet's Theorem." §1.2 in Hill's Equation. New York: Dover, pp. 3-8, 1979.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|