Read More
Date: 24-5-2018
671
Date: 21-5-2018
859
Date: 22-6-2018
1350
|
Let be a real or complex piecewise-continuous function defined for all values of the real variable and that is periodic with minimum period so that
(1) |
Then the differential equation
(2) |
has two continuously differentiable solutions and , and the characteristic equation is
(3) |
with eigenvalues and . Then Floquet's theorem states that if the roots and are different from each other, then (2) has two linearly independent solutions
(4) |
|||
(5) |
where and are periodic with period (Magnus and Winkler 1979, p. 4).
REFERENCES:
Magnus, W. and Winkler, S. "Floquet's Theorem." §1.2 in Hill's Equation. New York: Dover, pp. 3-8, 1979.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|