x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Digit
المؤلف: Bailey, D. H. and Crandall, R. E.
المصدر: "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. https://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
الجزء والصفحة: ...
10-11-2020
659
The number of digits in an integer is the number of numbers in some base (usually 10) required to represent it. The numbers 1 to 9 are therefore single digits, while the numbers 10 to 99 are double digits. Terms such as "double-digit inflation" are occasionally encountered, although this particular usage has thankfully not been needed in the U.S. for some time. The number of base- digits in a number can be calculated as
(1) |
where is the floor function. For , the formula becomes
(2) |
The number of digits in the number represented in base is given by the Wolfram Language function DigitCount[n, b, d], with DigitCount[n, b] giving a list of the numbers of each digit in . The total number of digits in a number is given by IntegerLength[n, b].
The positive integers with distinct base-10 digits are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ... (OEIS A010784). The number of -digit integers is given by
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
where is a Pochhammer symbol. For , 2, ..., the first few values are 9, 81, 648, 4536, 27216, 136080, 544320, 1632960, 3265920, and 3265920 (OEIS A073531). There are therefore exactly
(7) |
|||
(8) |
such numbers (Pondiczery 1975-a pseudonym for Ralph P. Boas; Foregger 1976), the largest of which is 9876543210.
The sums of the reciprocals of these 8877690 integers (Pondiczery 1975, Foregger 1976) is a rational number with numerator having 14816583 digits and denominator having 14816582 digits and given by
(9) |
|||
(10) |
(OEIS A117914), computed by E. W. Weisstein on Apr. 1, 2006 using gridMathematica.
Numbers in base-10 which are divisible by their digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 111, 112, 115, 122, ... (OEIS A034838). Numbers which are divisible by the sum of their digits are called Harshad numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, ... (OEIS A005349). Numbers which are divisible by both their digits and the sum of their digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 111, 112, 126, 132, 135, 144, ... (OEIS A050104). Numbers which are equal to (i.e., not just divisible by) the product of their divisors and the sum of their divisors are called sum-product numbers and are given by 1, 135, 144, ... (OEIS A038369).
order | OEIS | Numbers () | |
2 | increasing | ||
2 | nondecreasing | A000225 | 3, 7, 15, 31, 63, 127, 255, 511, 1023, ... |
2 | nonincreasing | A023758 | 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, ... |
2 | decreasing | 2 | |
10 | increasing | A009993 | 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, ... |
10 | nondecreasing | A009994 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, ... |
10 | nonincreasing | A009996 | 10, 11, 20, 21, 22, 30, 31, 32, 33, 40, 41, 42, ... |
10 | decreasing | A009995 | 10, 20, 21, 30, 31, 32, 40, 41, 42, 43, 50, 51, ... |
16 | increasing | A023784 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, ... |
16 | nondecreasing | A023757 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, ... |
16 | nonincreasing | A023771 | 17, 32, 33, 34, 48, 49, 50, 51, 64, 65, 66, 67, ... |
16 | decreasing | A023797 | 32, 33, 48, 49, 50, 64, 65, 66, 67, 80, 81, 82, ... |
In hexadecimal, numbers with increasing digits are called metadromes, those with nondecreasing digits are called plaindrones, those with nonincreasing digits are called nialpdromes, and those with decreasing digits are called katadromes.
The count of numbers with strictly increasing digits in base- is , and the number with strictly decreasing digits is .
REFERENCES:
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001. https://www.nersc.gov/~dhbailey/dhbpapers/baicran.pdf.
Foregger, T. "Helping Professor Umbugio. Solution to Problem E2533." Amer. Math. Monthly 83, 570-571, 1976.
Pondiczery, E. S. "Problem E2533." Amer. Math. Monthly 82, 401, 1975.
Sloane, N. J. A. Sequences A005349/M0481, A009993, A009994, A009995, A009996, A010784, A023757, A023758, A023771, A023784, A023797, A034838, A038369, A050104, A073531, and A117914 in "The On-Line Encyclopedia of Integer Sequences."