1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Hundred-Dollar, Hundred-Digit Challenge Problems

المؤلف:  Bailey, D. H. and Borwein, J. M.

المصدر:  Sample Problems of Experimental Mathematics." 22 Sept. 2003. https://crd.lbl.gov/~dhbailey/expmath/expmath-probs.pdf.

الجزء والصفحة:  ...

18-4-2020

581

Hundred-Dollar, Hundred-Digit Challenge Problems

 

The hundred-dollar, hundred-digits challenge problems are a set of ten problems in numerical analysis published in the January/February 2002 issue of SIAM News (https://www.siam.org/siamnews/01-02/challenge.pdf). Nick Trefethen, the proposer of the problems, offered a $100 prize to the person or group obtaining the largest number of correct digits (up to a maximum of 10) for these problems by May 20, 2002. Trefethen underestimated the ingenuity of problem solvers, and 20 independent teams obtained 10 correct digits for all 10 problems. After an anonymous donor stepped in to help defray the larger than anticipated payoffs, prize checks went out to all winners by December 2002.

The problems posed were the following.

HundredDollar1Plot

1. What is lim_(epsilon->0)int_epsilon^1x^(-1)cos(x^(-1)lnx)dx? This problem is difficult to integrate numerically in its original form because of the strong oscillations near the origin. However, by making the substitution u=-lnx/x, it can be transformed to the integral

 h_1=int_0^infty(cosu)/(u{1+[W(u)]^(-1)})du

(1)

which converges fairly rapidly using oscillatory numerical integration techniques.

Boersma and Jansen used contour integration to transform the problem into

 h_1=int_0^(pi/2)sin(tsint)e^(-tcost)dt+int_1^infty(cos(1/2piy))/(y^(y+1))dy,

(2)

each of which converge quite rapidly.

Laurie noted that the integral can be written

 h_1=R[int_Cz^(i/z-1)dz],

(3)

where C is any contour from 0 to 1 such that no singularities lie in the region defined by C and the line from 0 to 1 (Wagon 2004). For example, C=(0,1/2+i,1) is such a contour.

The problem can also be solved by writing the integrand as the asymptotic series

 xcos[xln(x^(-1))]=sum_(k=0)^infty((-1)^k)/((2k)!)(ln^(2k)x)x^(2k+1)

(4)

and integrating term by term to obtain the strongly oscillatory sum

 h_1=sum_(k=1)^infty(-1)^(k+1)(2k)^(2k-1).

(5)

Amazingly, this sum can be regularized using Wynn's epsilon method using a suitable number of terms and extrapolation degree to obtain around 7 correct digits.

2. A photon moving at speed 1 in the x-y plane starts at t=0 at (x,y)=(0.5,0.1) heading due east. Around every integer lattice point (i,j) in the plane, a circular mirror of radius 1/3 has been erected. How far from the origin is the photon at t=10?

3. The infinite matrix A with entries a_(11)=1a_(12)=1/2a_(21)=1/3a_(13)=1/4a_(22)=1/5a_(31)=1/6, etc., is a bounded operator on l^2. What is ||A||? This problem is equivalent to finding the largest singular value of the infinite matrix with entries

 a_(ij)=2/(2-i+i^2-3j+2ij+j^2),

(6)

i.e., the matrix

 A=[1 1/2 1/4 ...; 1/3 1/5 ... ...; 1/6 ... ... ...; ... ... ... ...; | | | ...].

(7)

HundredDollar4Plot

4. What is the global minimum of the function

 exp(sin(50x))+sin(60e^y)+sin(70sinx)+sin(sin(80y))-sin(10(x+y))+1/4(x^2+y^2)?

(8)

(Cf. Bailey et al. 2007, pp. 12 and 219; Kampas and Pintér 2006). This problem can be solved in a one-liner in the Wolfram Language.

  NMinimize[f[x, y], {x, y}, Method -> {"RandomSearch",
    "SearchPoints" -> 700}, WorkingPrecision -> 20]

5. Let f(z)=1/Gamma(z), where Gamma(z) is the gamma function, and let p(z) be the cubic polynomial that best approximates f(z) on the unit disk in the supremum norm ||·||_infty. What is ||f-p||_infty?

6. A flea starts at (0,0) on the infinite two-dimensional integer lattice and executes a biased random walk: At each step it hops north or south with probability 1/4, east with probability 1/4+epsilon, and west with probability 1/4-epsilon. The probability that the flea returns to (0, 0) sometime during its wanderings is 1/2. What is epsilon?

The solution is given by solving

 (pisqrt(2+16epsilon^2-2sqrt(1-16epsilon^2)))/(K(sqrt((2sqrt(1-16epsilon^2))/(sqrt(1-16epsilon^2)-1-8epsilon^2))))=2,

(9)

where K(k) is a complete elliptic integral of the first kind, Equivalently, it is given by the root of

 sqrt(2)AGM(sqrt(1+8epsilon^2-sqrt(1-16epsilon^2)),sqrt(1+8epsilon^2+sqrt(1-16epsilon^2))=1,

(10)

where AGM(a,b) is the arithmetic-geometric mean.

It is also given by solving u(epsilon)=2, where

u(epsilon) = 2/piint_0^pi(dphi)/(sqrt(3-4cosphi+cos^2phi+16epsilon^2))

(11)

= 2/piint_(-1)^1(dt)/(sqrt(1-t^2)sqrt(3-4t+t^2+14epsilon^2))

(12)

= (2sqrt(2))/(pisqrt(1+8epsilon^2sqrt(1-16epsilon^2)))×K(sqrt(1-(1+8epsilon^2-sqrt(1-16epsilon^2))/(1+8epsilon^2+sqrt(1-16epsilon^2)))),

(13)

(Bornemann 2002).

7. Let A be the 20000×20000 matrix whose entries are zero everywhere except for the primes 2, 3, 5, 7, ..., 224737 along the main diagonal and the number 1 in all the positions a_(ij) with |i-j|=1, 2, 4, 8, ..., 16384. What is the (1, 1) entry of A^(-1)?

This problem can be solved exactly, yielding a rational number in which the numerator and denominator each have 97389 digits:

 h_3=(31016407491...417983612357075)/(42776629106...013006012935182)

(14)

(Wagon 2004).

8. A square plate [-1,1]×[-1,1] is at temperature u=0. At time t=0, the temperature is increased to u=5 along one of the four sides while being held at u=0 along the other three sides, and heat then flows into the plate according to u_t=Deltau. When does the temperature reach u=1 at the center of the plate?

An expression that gives 10 correct digits is given by

 h_8=-1/(pi^2)ln(-81pi^4+518400x-691200x^3+345600x^5 
 -76800x^7+6400x^9)_1,

(15)

where (P(x))_n is a polynomial root. Getting higher accuracy requires using more terms of the series.

HundredDollar9Plot

9. The integral I(alpha)=int_0^2[2+sin(10alpha)]x^alphasin(alpha/(2-x))dx depends on the parameter alpha. What is the value alpha in [0,5] at which I(alpha) achieves its maximum?

By making the change of variables u=1/(2-x), the integral can be transformed to

 I(alpha)=4sqrt(pi)Gamma(alpha)G_(2,4)^(3,0)((alpha^2)/(16)|(alpha+2)/2,(alpha+3)/2; 1/2,1/2,1,0)[sin(10alpha)+2].

(16)

By plotting, the maximum can be seen to occur near alpha=0.78, and standard root-finding techniques can be used to determine it to high-precision.

10. A particle at the center of a 10×1 rectangle undergoes Brownian motion (i.e., 2D random walk with infinitesimal step lengths) till it hits the boundary. What is the probability that it hits at one of the ends rather than at one of the sides? Amazingly, this problem has a closed-form solution, given by

h_(10) = 4/pisum_(k=0)^(infty)((-1)^k)/(2k+1)sech[5pi(2k+1)]

(17)

= 8/pisum_(k=0)^(infty)(-1)^ktan^(-1)[e^(-5pi(2k-1))]

(18)

= 2/picos^(-1)sqrt(lambda(1/(10)i))

(19)

= 2/pisin^(-1)[(3-2sqrt(2))^2(2+sqrt(5))^2×(sqrt(10)-3)^2(5^(1/4)-sqrt(2))^4],

(20)

where lambda(tau) is the elliptic lambda function (cf. Bailey et al. 2007, p. 48).

The solutions are summarized in the following table.

# OEIS h_n
1. A117231 0.3233674316
2. A117232 0.9952629194
3. A117233 1.274224152
4. A117234 -3.306868647
5. A117235 0.2143352345
6. A117236 0.06191395447
7. A117237 0.7250783462
8. A117238 0.4240113870
9. A117239 0.7859336743
10. A117240 3.837587979×10^(-7)

 


REFERENCES:

Bailey, D. H. and Borwein, J. M. "Sample Problems of Experimental Mathematics." 22 Sept. 2003. https://crd.lbl.gov/~dhbailey/expmath/expmath-probs.pdf.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Beard, B. B.; Medley, B.; and van Gans, M. "The 2002 SIAM Challenge." https://www.maxwellian.demon.co.uk/~marijke/SIAM2002/.

Boersma, J.; Jansen, J.; Simons, S.; and Steutel, F. "The SIAM 100-Dollar 100-Digit Challenge." https://www.win.tue.nl/scg/siamcontest/.

Bornemann, F. "Short Remarks on the Solution of Trefethen's Hundred-Digit Challenge." Nov. 5, 2002. https://www-m3.ma.tum.de/m3old/ftp/Bornemann/pdf/short.pdf.

Bornemann, F.; Lauire, D.; Wagon, S.; and Waldvogel, J. The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing. Philadelphia, PA: SIAM, 2004. Additional material available at https://www-m8.ma.tum.de/m3/bornemann/challengebook/.

Borwein, J. M. "The 100 Digit Challenge: An Extended Review." Math. Intelligencer 27, 40-48, 2005.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 22-24, 2003.

Briggs, K. "Hundred-Dollar, Hundred-Digit Challenge." https://keithbriggs.info/solutions.html.

Kampas, F. J. and Pintér, J. D. "Configuration Analysis and Design Using Optimization Tools in Mathematica." Mathematica J. 10, 128-154, 2006.

Kern, M. "Solution to the SIAM 'Hundred-Dollar, Hundred-Digit Challenge'." Report. May 2002. https://www-rocq.inria.fr/~kern/Challenge/RR-challenge.pdf.

Laurie, D. "Trefethen Challenge Problems." https://dip.sun.ac.za/~laurie/trefethen-challenge/.

Leslie, M. (Ed.). "NetWatch: Decimal Decathlon." Science 295, 1431, 2002.

Sloane, N. J. A. Sequences A117231, A117232, A117233, A117234, A117235, A117236, A117237, A117238, A117239, and A117240 in "The On-Line Encyclopedia of Integer Sequences."

Trefethen, N. "A Hundred-Dollar, Hundred-Digit Challenge." SIAM News 35, No. 1, Jan./Feb. 2002. https://www.siam.org/siamnews/01-02/challenge.pdf.

Trefethen, N. "The SIAM 100-Dollar, 100-Digit Challenge." https://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html.

Trefethen, N. L. "Chastened Challenge Sponsor: "I Misjudged." SIAM News 35, No. 6, 1-3, July/Aug. 2002.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 109, 2004. https://www.mathematicaguidebooks.org/.

Weisstein, E. W. "A Hundred-Dollar Challenge." MathWorld Headline News, Feb. 4, 2002. https://mathworld.wolfram.com/news/2002-02-04/challenge/.

Weisstein, E. W. "Hundred-Dollar Challenge Winners Announced." MathWorld Headline News, May 25, 2002. https://mathworld.wolfram.com/news/2002-05-25/challenge/.

Wagon, S. "Solutions." https://stanwagon.com/wagon/Misc/Links/SIAMchallenge_lnk_2.html.

Wagon, S. "The SIAM 100-Digit Challenge." Wolfram Technology Conference, Champaign IL, 2004. https://library.wolfram.com/infocenter/Conferences/5353/.

EN

تصفح الموقع بالشكل العمودي