Cusp Form
المؤلف:
Apostol, T. M.
المصدر:
Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
22-12-2019
1184
Cusp Form
A cusp form is a modular form for which the coefficient
in the Fourier series
 |
(1)
|
(Apostol 1997, p. 114). The only entire cusp form of weight
is the zero function (Apostol 1997, p. 116). The set of all cusp forms in
(all modular forms of weight
) is a linear subspace of
which is denoted
. The dimension of
is 1 for
, 16, 18, 20, 22, and 26 (Apostol 1997, p. 119). For a cusp form
,
 |
(2)
|
(Apostol 1997, p. 135) or, more precisely,
 |
(3)
|
for every
(Selberg 1965; Apostol 1997, p. 136). It is conjectured that the
in the exponent can be reduced to
(Apostol 1997, p. 136).
REFERENCES:
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 114 and 116, 1997.
Selberg, A. "On the Estimate of Coefficients of Modular Forms." Proc. Sympos. Pure Math. 8, 1-15, 1965.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة