x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Dirichlet L-Series
المؤلف: Apostol, T. M
المصدر: Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
الجزء والصفحة: ...
19-12-2019
899
A Dirichlet -series is a series of the form
(1) |
where the number theoretic character is an integer function with period , are called Dirichlet -series. These series are very important in additive number theory (they were used, for instance, to prove Dirichlet's theorem), and have a close connection with modular forms. Dirichlet -series can be written as sums of Lerch transcendents with a power of .
Dirichlet -series is implemented in the Wolfram Language as DirichletL[k, j, s] for the Dirichlet character with modulus and index .
The generalized Riemann hypothesis conjectures that neither the Riemann zeta function nor any Dirichlet -series has a zero with real part larger than 1/2.
The Dirichlet lambda function
(2) |
|||
(3) |
Dirichlet beta function
(4) |
|||
(5) |
and Riemann zeta function
(6) |
|||
(7) |
are all Dirichlet -series (Borwein and Borwein 1987, p. 289).
Hecke (1936) found a remarkable connection between each modular form with Fourier series
(8) |
and the Dirichlet -series
(9) |
This Dirichlet series converges absolutely for (if is a cusp form) and if is not a cusp form. In particular, if the coefficients satisfy the multiplicative property
(10) |
then the Dirichlet -series will have a representation of the form
(11) |
which is absolutely convergent with the Dirichlet series (Apostol 1997, pp. 136-137). In addition, let be an even integer, then can be analytically continued beyond the line such that
1. If , then is an entire function of ,
2. If , is analytic for all except a single simple pole at with complex residue
(12) |
where is the gamma function, and
3. satisfies
(13) |
(Apostol 1997, p. 137).
The number theoretic character is called primitive if the j-conductor . Otherwise, is imprimitive. A primitive -series modulo is then defined as one for which is primitive. All imprimitive -series can be expressed in terms of primitive -series.
Let or , where are distinct odd primes. Then there are three possible types of primitive -series with real coefficients. The requirement of real coefficients restricts the number theoretic character to for all and . The three type are then
1. If (e.g., , 3, 5, ...) or (e.g., , 12, 20, ...), there is exactly one primitive -series.
2. If (e.g., , 24, ...), there are two primitive -series.
3. If , or where (e.g., , 6, 9, ...), there are no primitive -series
(Zucker and Robertson 1976). All primitive -series are algebraically independent and divide into two types according to
(14) |
Primitive -series of these types are denoted . For a primitive -series with real number theoretic character, if , then
(15) |
If , then
(16) |
and if , then there is a primitive function of each type (Zucker and Robertson 1976).
The first few primitive negative -series are , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ... (OEIS A003657), corresponding to the negated discriminants of imaginary quadratic fields. The first few primitive positive -series are , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ... (OEIS A003658).
The Kronecker symbol is a real number theoretic character modulo , and is in fact essentially the only type of real primitive number theoretic character mod (Ayoub 1963). Therefore,
(17) |
where is the Kronecker symbol (Borwein and Borwein 1987, p. 293).
For primitive values of , the Kronecker symbols are periodic with period , so can be written in the form of sums, each of which can be expressed in terms of the polygamma function , giving
(18) |
The functional equations for are
(19) |
|||
(20) |
(Borwein and Borwein 1986, p. 303).
For a positive integer
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
|||
(25) |
|||
(26) |
where and are rational numbers. Nothing general appears to be known about or , although it is possible to express all in terms of known transcendentals (Zucker and Robertson 1976).
can be expressed in terms of transcendentals by
(27) |
where is the class number and is the Dirichlet structure constant.
No general forms are known for and in terms of known transcendentals. Edwards (2000) gives several examples of special cases of . A number of primitive series are given by
(28) |
|||
(29) |
|||
(30) |
|||
(31) |
|||
(32) |
|||
(33) |
|||
(34) |
|||
(35) |
|||
(36) |
|||
(37) |
|||
(38) |
|||
(39) |
|||
(40) |
|||
(41) |
and for are given by
(42) |
|||
(43) |
|||
(44) |
|||
(45) |
|||
(46) |
|||
(47) |
|||
(48) |
|||
(49) |
|||
(50) |
|||
(51) |
|||
(52) |
where is Catalan's constant, is the trigamma function, and is the dilogarithm.
Bailey and Borwein (Bailey and Borwein 2005; Bailey et al. 2006a, pp. 5 and 62; Bailey et al. 2006b; Bailey and Borwein 2008; Coffey 2008) conjectured the relation actually in effect proved by Zagier (1986) nearly twenty years earlier (M. Coffey, pers. comm., Mar. 30, 2009) that is also given by
(53) |
|||
(54) |
|||
(55) |
|||
(56) |
|||
(57) |
where the latter expressions are due to Coffey (2008ab), with
(58) |
|||
(59) |
|||
(60) |
|||
(61) |
|||
(62) |
REFERENCES:
Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
Apostol, T. M. "Modular Forms and Dirichlet Series" and "Equivalence of Ordinary Dirichlet Series." §6.16 and §8.8 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-137 and 174-176, 1997.
Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.
Bailey, D. H. and Borwein, J. M. "Experimental Mathematics: Examples, Methods, and Implications." Not. Amer. Math. Soc. 52, 502-514, 2005.
Bailey, D. H. and Borwein, J. M. "Computer-Assisted Discovery and Proof." In Tapas in Experimental Mathematics (Ed. T. Amdeberhan and V. Moll). Providence, RI: Amer. Math. Soc., 2008.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 222, 2006a. http://crd.lbl.gov/~dhbailey/expmath/maa-course/hyper-ema.pdf.
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006b.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Buell, D. A. "Small Class Numbers and Extreme Values of -Functions of Quadratic Fields." Math. Comput. 139, 786-796, 1977.
Coffey, M. W. "Evaluation of a ln tan Integral Arising in Quantum Field Theory." J. Math. Phys. 49, 093508-1-15, 2008a.
Coffey, M. W. "Alternative Evaluation of a ln tan Integral Arising in Quantum Field Theory." Nov. 15, 2008b. http://arxiv.org/abs/0810.5077.
Edwards, H. M. Fermat's Last Theorem : A Genetic Introduction to Algebraic Number Theory. New York: Springer-Verlag, 2000.
Hecke, E. "Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung." Math. Ann. 112, 664-699, 1936.
Ireland, K. and Rosen, M. "Dirichlet -Functions." Ch. 16 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 249-268, 1990.
Koch, H. "L-Series." Ch. 7 in Number Theory: Algebraic Numbers and Functions. Providence, RI: Amer. Math. Soc., pp. 203-258, 2000.
Shanks, D. and Wrench, J. W. Jr. "The Calculation of Certain Dirichlet Series." Math. Comput. 17, 135-154, 1963.
Shanks, D. and Wrench, J. W. Jr. "Corrigendum to 'The Calculation of Certain Dirichlet Series.' " Math. Comput. 17, 488, 1963.
Sloane, N. J. A. Sequences A003657/M2332, A003658/M3776, and A103133 in "The On-Line Encyclopedia of Integer Sequences."
Zagier, D. "Hyperbolic Manifolds and Special Values of Dedekind Zeta-Functions." Invent. Math. 83, 285-301, 1986.
Zucker, I. J. and Robertson, M. M. "Some Properties of Dirichlet -Series." J. Phys. A: Math. Gen. 9, 1207-1214, 1976.