x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Arithmetic
المؤلف: Derbyshire, J.
المصدر: Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin
الجزء والصفحة: ...
31-10-2019
713
Arithmetic is the branch of mathematics dealing with integers or, more generally, numerical computation. Arithmetical operations include addition, congruence calculation, division, factorization, multiplication, power computation, root extraction, and subtraction. Arithmetic was part of the quadrivium taught in medieval universities. A mnemonic for the spelling of "arithmetic" is "a rat in the house may eat the ice cream."
The branch of mathematics known as number theory is sometimes known as higher arithmetic.
Modular arithmetic is the arithmetic of congruences.
Floating-point arithmetic is the arithmetic performed on real numbers by computers or other automated devices using a fixed number of bits.
The fundamental theorem of arithmetic, also called the unique factorization theorem, states that any positive integer can be represented in exactly one way as a product of primes.
The Löwenheim-Skolem theorem, which is a fundamental result in model theory, establishes the existence of "nonstandard" models of arithmetic.
REFERENCES:
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 371-372, 2004.
Karpinski, L. C. The History of Arithmetic. Chicago, IL: Rand, McNally, & Co., 1925.
Maxfield, J. E. and Maxfield, M. W. Abstract Algebra and Solution by Radicals. Philadelphia, PA: Saunders, 1992.
Thompson, J. E. Arithmetic for the Practical Man. New York: Van Nostrand Reinhold, 1973.
Weisstein, E. W. "Books about Arithmetic." http://www.ericweisstein.com/encyclopedias/books/Arithmetic.html.