 
					
					
						Minkowski,s Question Mark Function					
				 
				
					
						 المؤلف:  
						Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H
						 المؤلف:  
						Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H					
					
						 المصدر:  
						Experimental Mathematics in Action. Wellesley, MA: A K Peters
						 المصدر:  
						Experimental Mathematics in Action. Wellesley, MA: A K Peters					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 27-10-2019
						27-10-2019
					
					
						 2473
						2473					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Minkowski's Question Mark Function

The function  defined by Minkowski for the purpose of mapping the quadratic surds in the open interval
 defined by Minkowski for the purpose of mapping the quadratic surds in the open interval  into the rational numbers of
 into the rational numbers of  in a continuous, order-preserving manner.
 in a continuous, order-preserving manner.  takes a number having continued fraction
 takes a number having continued fraction ![x=[0;a_1,a_2,a_3,...]](http://mathworld.wolfram.com/images/equations/MinkowskisQuestionMarkFunction/Inline5.gif) to the number
 to the number
	
		
			|  | (1) | 
	
The function satisfies the following properties (Salem 1943).
1.  is strictly increasing.
 is strictly increasing.
2. If  is rational, then
 is rational, then  is of the form
 is of the form  , with
, with  and
 and  integers.
 integers.
3. If  is a quadratic surd, then the continued fraction is periodic, and hence
 is a quadratic surd, then the continued fraction is periodic, and hence  is rational.
 is rational.
4. The function is purely singular (Denjoy 1938).
 can also be constructed as
 can also be constructed as
	
		
			|  | (2) | 
	
where  and
 and  are two consecutive irreducible fractions from the Farey sequence. At the
 are two consecutive irreducible fractions from the Farey sequence. At the  th stage of this definition,
th stage of this definition,  is defined for
 is defined for  values of
 values of  , and the ordinates corresponding to these values are
, and the ordinates corresponding to these values are  for
 for  , 1, ...,
, 1, ...,  (Salem 1943).
 (Salem 1943).
The function satisfies the identity
	
		
			|  | (3) | 
	
A few special values include
where  is the golden ratio.
 is the golden ratio.
REFERENCES:
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 237-238, 2007.
Conway, J. H. "Contorted Fractions." On Numbers and Games, 2nd ed. Wellesley, MA: A K Peters, pp. 82-86 (1st ed.), 2000.
Denjoy, A. "Sur une fonction réelle de Minkowski." J. Math. Pures Appl. 17, 105-155, 1938.
Girgensohn, R. "Constructing Singular Functions via Farey Fractions." J. Math. Anal. Appl. 203, 127-141, 1996.
Kinney, J. R. "Note on a Singular Function of Minkowski." Proc. Amer. Math. Soc. 11, 788-794, 1960.
Minkowski, H. "Zur Geometrie der Zahlen." In Gesammelte Abhandlungen, Vol. 2. New York: Chelsea, pp. 44-52, 1991.
Salem, R. "On Some Singular Monotone Functions which Are Strictly Increasing." Trans. Amer. Math. Soc. 53, 427-439, 1943.
Tichy, R. and Uitz, J. "An Extension of Minkowski's Singular Functions." Appl. Math. Lett. 8, 39-46, 1995.
Viader, P.; Paradis, J.; and Bibiloni, L. "A New Light on Minkowski's  Function." J. Number Th. 73, 212-227, 1998.
 Function." J. Number Th. 73, 212-227, 1998.
Yakubovich, S. "The Affirmative Solution to Salem's Problem Revisited." 31 Dec 2014. http://arxiv.org/abs/1501.00141.
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة