Read More
Date: 13-5-2021
2913
Date: 28-6-2021
2886
Date: 8-8-2021
996
|
Let R be a unital ring that is not necessarily commutative, let M be a right R-module, and let N be a left R-module. These modules are Abelian groups under the operation of addition, and Abelian groups are modules over the ring Z of integers. We can therefore form their tensor product M ⊗Z N. This tensor product is an Abelian group.
Let K be the subgroup of M ⊗Z N generated by the elements
(xr) ⊗Z y − x ⊗Z (ry)
for all x ∈ M, y ∈ N and r ∈ R, where x ⊗Z y denotes the tensor product of x and y in the ring M ⊗Z N. We define the tensor product M ⊗R N of the right R-module M and the left R-module N over the ring R to be the quotient group M ⊗Z N/K. Given x ∈ M and y ∈ N, let x ⊗ y denote the
image of x ⊗Z y under the quotient homomorphism π: M ⊗Z N → M ⊗R N.
Then
(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y, x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2,
and
(xr) ⊗ y = x ⊗ (ry)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R.
Lemma 1.1 Let R be a unital ring, let M be a right R-module, and let N be a left R-module. Then the tensor product M ⊗R N of M and N is an Abelian group that satisfies the following universal property:
given any Abelian group P, and given any Z-bilinear function
f: M × N → P which satisfies
f(xr, y) = f(x, ry)
for all x ∈ M, y ∈ N and r ∈ R, there exists a unique Abelian group homomorphism ϕ: M ⊗R N → P such that f(x, y) = ϕ(x⊗y) for all x ∈ M and y ∈ N.
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|