 
					
					
						Modules-Multilinear Maps and Tensor Products					
				 
				
					
						 المؤلف:  
						David R. Wilkins
						 المؤلف:  
						David R. Wilkins					
					
						 المصدر:  
						Algebraic Topology
						 المصدر:  
						Algebraic Topology 					
					
						 الجزء والصفحة:  
						96-97
						 الجزء والصفحة:  
						96-97					
					
					
						 4-7-2017
						4-7-2017
					
					
						 1781
						1781					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Let M1, M2, . . . , Mn be modules over a unital commutative ring R, and let P be an R-module. A function f: M1 × M2 × · · · × Mn → P is said to be R-multilinear if
              f(x1, . . . , xk−1, x`k + x``k, xk+1, . . . , xn)
                            = f(x1, . . . , xk−1, x`k, xk+1, . . . , xn)
                                         + f(x1, . . . , xk−1, x``k, xk+1, . . . , xn)
and
               f(x1, . . . , xk−1, rxk, xk+1, . . . , xn) = rf(x1, . . . , xk−1, xk, xk+1, . . . , xn)
for k = 1, 2, . . . , n, for all xl, x`l, x``l ∈ Ml (l = 1, 2, . . . , n), and for all r ∈ R.
(When k = 1 the list x1, . . . , xk−1 should be interpreted as the empty list in the formulae above; when k = n the list xk+1, . . . , xn should be interpreted as the empty list.) One can construct a module M1 ⊗R M2 ⊗R · · · ⊗R Mn,  referred to as the tensor product of the modules M1, M2, . . . , Mn over the ring R, and an R-multilinear mapping
jM1×M2×···×Mn: M1 × M2 × · · · × Mn → M1 ⊗R M2 ⊗R · · · ⊗R Mn
where the tensor product and multilinear mapping jM1×M2×···×Mn satisfy the following universal property:
given any R-module P, and given any R-multilinear function f: M1 × M2 × · · · × Mn → P, there exists a unique R-module homomorphism θ: M1 ⊗R M2 ⊗R · · · ⊗R Mn → P such that f = θ ◦ jM1×M2×···×Mn
This tensor product is defined to be the quotient of the free module FR(M1×M2×· · ·×Mn) by the submodule K generated by elements of the free module that are of the form
iM1×M2×···×Mn (x1, . . . , xk−1, x`k + x``k, xk+1, . . . , xn)
             − iM1×M2×···×Mn (x1, . . . , xk−1, x`k, xk+1, . . . , xn)
            − iM1×M2×···×Mn (x1, . . . , xk−1, x``k, xk+1, . . . , xn),
or are of the form
               iM1×M2×···×Mn (x1, . . . , xk−1, rxk, xk+1, . . . , xn)
                       − riM1×M2×···×Mn (x1, . . . , xk−1, xk, xk+1, . . . , xn),
where xl, x`l, x``l ∈ Ml  for l = 1, 2, . . . , n, and r ∈ R. There is an R-multilinear function
jM1×M2×···×Mn: M1 × M2 × · · · × Mn → M1 ⊗R M2 ⊗R · · · ⊗R Mn,  where jM1×M2×···×Mn
is the composition π ◦ iM1×M2×···×Mn of the natural embedding
iM1×M2×···×Mn: M1 × M2 × · · · × Mn → FR(M1 × M2 × · · · × Mn)
and the quotient homomorphism
            π: FR(M1 × M2 × · · · × Mn) → M1 ⊗R M2 ⊗R · · · ⊗R Mn.
 
 
				
				
					
					 الاكثر قراءة في  التبلوجيا
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة