تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Covering Maps and Discontinuous Group Actions-Isomorphisms of Covering Maps
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
24-6-2017
1557
Definition Let p1: X˜1 → X and p2: X˜2 → X be covering maps over some topological space X. We say that the covering maps p1: X˜1 → X and p2: X˜2 → X are topologically isomorphic if there exists a homeomorphism h: X˜1 → X˜2 from the covering space X˜1 to the covering space X˜2 with the property that p1 = p2 ◦ h.
We can apply Theorem 1.19 in order to derive a criterion for determining whether or not two covering maps over some connected locally path connected topological space are isomorphic.
Theorem 1.21 Let X be a topological space which is both connected and locally path-connected, let X˜1 and X˜2 be connected topological spaces, and let p1: X˜1 → X and p2: X˜2 → X be covering maps over X. Let w1 and w2 be points of X˜1 and X˜2 respectively for which p1(w1) = p2(w2). Then there exists a homeomorphism h: X˜1 → X˜2 from the covering space X˜1 to the covering space X˜2 satisfying p2 ◦ h = p1 and h(w1) = w2 if and only if the subgroups p1#(π1(X˜1, w1)) and p2#(π1(X˜2, w2)) of π1(X, p1(w1)) coincide.
Proof Suppose that there exists a homeomorphism h: X˜1 → X˜2 from the covering space X˜1 to the covering space X˜2 for which p2 ◦h = p1 and h(w1) = w2. Thenh#(π1(X˜1, w1)) = π1(X˜2, w2), and therefore
p1#(π1(X˜1, w1)) = p2# (h#(π1(X˜1, w1))) = p2#(π1(X˜2, w2)).
Conversely suppose that p1#(π1(X˜1, w1)) = p2#(π1(X˜2, w2)). It follows from Proposition 1.16 that the covering spaces X˜1 and X˜2 are both locally path-connected, since X is a locally path-connected topological space. But X˜1 and X˜2 are also connected. It follows from Theorem 1.19 that there exist unique continuous maps h: X˜1 → X˜2 and k: X˜2 → X˜1 for which p2 ◦ h = p1, p1 ◦ k = p2, h(w1) = w2 and k(w2) = w1. But then p1 ◦ k ◦ h = p1 and (k ◦ h)(w1) = w1. It follows from this that the composition map k ◦ h is the identity map of X˜1 (since a straightforward application of Theorem 1.19 shows that any continuous map j: X˜1 → X˜1 which satisfies p1 ◦ j = p1 and j(w1) = w1 must be the identity map of X˜1). Similarly the composition map h◦k is the identity map of X˜2. Thus h: X˜1 → X˜2 is a homeomorphism whose inverse is k. Moreover p2 ◦ h = p2. Thus h: X˜1 → X˜2 is a homeomorphism with the required properties.
Corollary 1.22 Let X be a topological space which is both connected and locally path-connected, let X˜1 and X˜2 be connected topological spaces, and let p1: X˜1 → X and p2: X˜2 → X be covering maps over X. Let w1 and w2 be points of X˜1 and X˜2 respectively for which p1(w1) = p2(w2). Then the covering maps p1: X˜1 → X and p2: X˜2 → X are topologically isomorphic if and only if the subgroups p1#(π1(X˜1, w1)) and p2#(π1(X˜2, w2)) of π1(X, p1(w1)) are conjugate.
Proof Suppose that the covering maps p1: X˜1 → X and p2: X˜2 → X are topologically isomorphic. Let h: X˜1 → X˜2 be a homeomorphism for which p2 ◦ h = p1. Then p1#(π1(X˜1, w1)) = p2#(π1(X˜2, h(w1))).
It follows immediately from Lemma 1.7 that the subgroups p1#(π1(X˜1, w1)) and p2#(π1(X˜2, w2)) of π1(X, p1(w1)) are conjugate.
Conversely, suppose that the subgroups
p1#(π1(X˜1, w1)) and p2#(π1(X˜2, w2))
of π1(X, p1(w1)) are conjugate. The covering space X˜2 is both locally path connected (Proposition 1.16) and connected, and is therefore path-connected (Corollary 1.17). It follows from Lemma 4.7 that there exists a point w of X˜2 for which p2(w) = p2(w2) = p1(w1) and
p2#(π1(X˜2, w)) = p1#(π1(X˜1, w1)).
Theorem 1.21 now ensures that there exists a homeomorphism h: X˜1 → X˜2 from X˜1 to X˜2 such that p2 ◦ h = p1 and h(w1) = w. It follows that the covering maps are topologically isomorphic, as required.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
