Read More
Date: 17-4-2017
1593
Date: 28-3-2017
1811
Date: 25-3-2017
1861
|
Fuel Temperature Coefficient
Another temperature coefficient of reactivity, the fuel temperature coefficient, has a greater effect than the moderator temperature coefficient for some reactors. The fuel temperature coefficient is the change in reactivity per degree change in fuel temperature. This coefficient is also called the "prompt" temperature coefficient because an increase in reactor power causes an immediate change in fuel temperature. A negative fuel temperature coefficient is generally considered to be even more important than a negative moderator temperature coefficient because fuel temperature immediately increases following an increase in reactor power. The time for heat to be transferred to the moderator is measured in seconds. In the event of a large positive reactivity insertion, the moderator temperature cannot turn the power rise for several seconds, whereas the fuel temperature coefficient starts adding negative reactivity immediately.
Another name applied to the fuel temperature coefficient of reactivity is the fuel doppler reactivity coefficient. This name is applied because in typical low enrichment, light watermoderated, thermal reactors the fuel temperature coefficient of reactivity is negative and is the result of the doppler effect, also called doppler broadening. The phenomenon of the doppler effect is caused by an apparent broadening of the resonances due to thermal motion of nuclei as illustrated in Figure 1. Stationary nuclei absorb only neutrons of energy Eo. If the nucleus is moving away from the neutron, the velocity (and energy) of the neutron must be greater than Eo to undergo resonance absorption. Likewise, if the nucleus is moving toward the neutron, the neutron needs less energy than Eo to be absorbed. Raising the temperature causes the nuclei to vibrate more rapidly within their lattice structures, effectively broadening the energy range of neutrons that may be resonantly absorbed in the fuel. Two nuclides present in large amounts in the fuel of some reactors with large resonant peaks that dominate the doppler effect are uranium-238 and plutonium-240.
Figure 1: Effect of Fuel Temperature on Resonance Absorption Peaks
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|