المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

Spectrometer
29-3-2020
الاحتياطيات الواجب مراعاتها أثناء عملية رش المبيد
24-6-2017
من موارد السقط والتحريف والتصحيف والحشو في الأسانيد / ابن أبي عمير عن النخعي.
2024-05-15
في ما يعمل للزكام
10-05-2015
النسب
18-02-2015
التبعثرScattering - تبعثر رايلي - Rayleigh scatter
16-6-2022

CONTROLLABILITY, BANG-BANG PRINCIPLE-CONTROLLABILITY OF LINEAR EQUATIONS.  
  
405   02:34 مساءاً   date: 5-10-2016
Author : Lawrence C. Evans
Book or Source : An Introduction to Mathematical Optimal Control Theory
Page and Part : 16-24

According to the variation of parameters formula, the solution of (ODE) for a given control α(.) is

where X(t) = etM. Furthermore, observe that

                          x0∈ C(t)

if and only if  (1.1) there exists a control α(.) ∈ A such that x(t) = 0 if and only if

(1.2)

If and only if

(1.3)

We make use of these formulas to study the reachable set:

THEOREM 1.2 (STRUCTURE OF REACHABLE SET).

(i) The reachable set C is symmetric and convex.

(ii) Also, if x0 ∈ C(t¯), then x0 ∈ C(t) for all times t ≥  t-.

DEFINITIONS.

(i) We say a set S is symmetric if x ∈ S implies −x ∈ S.

(ii) The set S is convex if x, xˆ ∈ S and 0 ≤ λ ≤ 1 imply λx + (1 − λ) xˆ ∈ S.

Proof. 1. (Symmetry) Let t ≥ 0 and x0 ∈ C(t). Then

for some admissible control α ∈ A. Therefore

−α ∈ A since the set A is symmetric. Therefore −x0 ∈ C(t), and so each set C(t)  symmetric. It follows that C is symmetric.

2. (Convexity) Take

for appropriate times t, tˆ ≥ 0. Assume t ≤ tˆ. Then

Define a new control

and hence x0 ∈ C(tˆ). Now let 0 ≤ λ ≤ 1, and observe

3. Assertion (ii) follows from the foregoing if we take  t¯= tˆ.

A SIMPLE EXAMPLE. Let n = 2 and m = 1, A = [−1, 1], and write x(t) = (x1(t), x2(t))T . Suppose

This is a system of the form x˙ = Mx + Nα, for

Clearly C = {(x1, x2) | x1 = 0}, the x2–axis.

We next wish to establish some general algebraic conditions ensuring that C contains a neighborhood of the origin.

DEFINITION. The controllability matrix is

THEOREM 1.3 (CONTROLLABILITY MATRIX). We have

                              Rank G = n

 and only if

                                              0 ∈ C◦.

NOTATION. We write C◦ for the interior of the set C. Remember that

rank of  G = number of linearly independent rows of G

                    = number of linearly independent columns of G.

Clearly rank G ≤ n.

Proof. 1. Suppose first that rank G < n. This means that the linear span of the columns of G has dimension less than or equal to n − 1. Thus there exists a vector b ∈ Rn, b = 0, orthogonal to each column of G. This implies

                                   bTG = 0

and so

           bTN = bTMN =  …..  = bTMn−1N = 0.

2. We claim next that in fact

(1.4)                    bTMkN = 0 for all positive integers k.

To confirm this, recall that

                                    p(λ) := det(λI −M)

is the characteristic polynomial of M. The Cayley–Hamilton Theorem states that

                                        p(M) = 0.

So if we write

Similarly,

The claim (1.4) is proved.

Now notice that

according to (1.4).

3. Assume next that x0 ∈ C(t). This is equivalent to having

This says that b is orthogonal x0 . In other words, C must lie in the hyperplane orthogonal to b ≠ 0. Consequently C = ∅.

4. Conversely, assume 0 ∉C. Thus 0 ∉C(t) for all t > 0. Since C(t) is convex, there exists a supporting hyperplane to C(t) through 0. This means that there exists b = 0 such that b. x0 ≤ 0 for all x0 ∈ C(t).

Choose any x0 ∈ C(t). Then

for some control α, and therefore

We assert that therefore

(1.5)                                                    bTX−1 (s)N ≡ 0,

a proof of which follows as a lemma below. We rewrite (2.5) as

(1.6)                                                   bT e−sMN ≡ 0.

Let s = 0 to see that bTN = 0. Next differentiate (1.6) with respect to s, to find that

                                                  bT (−M)e−sMN ≡ 0.

For s = 0 this says

                                                  bTMN = 0.

We repeatedly differentiate, to deduce

bTMkN = 0 for all k = 0, 1, . . . ,

and so bTG = 0. This implies rank G < n, since b = 0.

LEMMA 1.4 (INTEGRAL INEQUALITIES). Assume that

(1.7)

for all α(.) ∈ A. Then

                             bTX−1 (s)N ≡ 0.

Proof. Replacing α by −α in (1.7), we see that

for all α(.) ∈ A. Define

v(s) := bTX−1 (s)N.

If v /≡ 0, then v(s0)≠0 for some s0. Then there exists an interval I such that s0 ∈ I and v = 0 on I. Now define α(.) ∈ A this way:

This implies the contradiction that v ≡ 0 in I.

DEFINITION. We say the linear system (ODE) is controllable if C = Rn.

THEOREM 1.5 (CRITERION FOR CONTROLLABILITY). Let A be the cube [−1, 1] n in Rn. Suppose as well that rank G = n, and Re λ < 0 for each

eigenvalue λ of the matrix M.

Then the system (ODE) is controllable.

Proof. Since rank G = n, Theorem 1.3 tells us that C contains some ball B centered at 0. Now take any x0 ∈ Rn and consider the evolution

in other words, take the control α(.) ≡ 0. Since Re λ < 0 for each eigenvalue λ of M, then the origin is asymptotically stable. So there exists a time T such that x(T) ∈ B. Thus x(T) ∈ B ⊂ C; and hence there exists a control α(.) ∈ A steering x(T) into 0 in finite time.

EXAMPLE. We once again consider the rocket railroad car, from §1.2, for which n = 2, m = 1, A = [−1, 1], and

Therefore

rank G = 2 = n.

Also, the characteristic polynomial of the matrix M is

Since the eigenvalues are both 0, we fail to satisfy the hypotheses of Theorem 1.5.

This example motivates the following extension of the previous theorem:

THEOREM 1.6 (IMPROVED CRITERION FOR CONTROLLABILITY). Assume rank G = n and Re λ ≤ 0 for each eigenvalue λ of M.

Then the system (ODE) is controllable.

 

Proof. 1. If C≠ Rn, then the convexity of C implies that there exist a vector b ≠0 and a real number μ such that

(1.8)                                        b .x0μ

for all x0 ∈ C. Indeed, in the picture we see that  b .(x0 − z0) ≤ 0; and this implies   (1.8) for μ := b . z0.

We will derive a contradiction.

2. Given b≠0,μ∈ R, our intention is to find x0 ∈ C so that (1.8) fails. Recall x0 ∈ C if and only if there exist a time t > 0 and a control α(.) ∈ A such that

(1.9)

To see this, suppose instead that v ≡ 0. Then k times differentiate the expression bTX−1(s)N with respect to s and set s = 0, to discover

                                         bTMkN = 0

for k = 0, 1, 2, . . . . This implies b is orthogonal to the columns of G, and so rank G < n. This is a contradiction to our hypothesis, and therefore (1.9) holds.

4. Next, define α(.) this way:

We want to find a time t > 0 so that

In fact, we assert that

(1.10)

To begin the proof of (1.10), introduce the function

We will find an ODE φ satisfies. Take p(.) to be the characteristic polynomial of M. Then

since p(M) = 0, according to the Cayley–Hamilton Theorem. But since p (− d/dt) v(t) ≡0, it follows that

Hence φ solves the (n + 1)th order ODE

We also knowLet μ1, . . . ,μ n+1 be the solutions of μ p(−μ) = 0. According to ODE theory, we can write

                        φ(t) = sum of terms of the form pi(t)eμ​ it

for appropriate polynomials pi(.).

Furthermore, we see that μn+1 = 0 and μk = −λk, where λ1, . . . , λn are the eigenvalues of M. By assumption Re μk ≥ 0, for k = 1, . . . , n. If

Then

that is, φ(t) → 0 as t → ∞. This is a contradiction to the representation formula of φ(t) = Σpi(t)eμit, with Re μi ≥ 0. Assertion (1.10) is proved.

5. Consequently given any μ, there exists t > 0 such that

a contradiction to (1.8). Therefore C = Rn.

References

[B-CD] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, 1997.

[B-J] N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations, Transactions AMS 298 (1986), 635–641.

[C1] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

[C2] F. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1989.

[Cr] B. D. Craven, Control and Optimization, Chapman & Hall, 1995.

[E] L. C. Evans, An Introduction to Stochastic Differential Equations, lecture notes avail-able at http://math.berkeley.edu/˜ evans/SDE.course.pdf.

[F-R] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.

[F-S] W. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 1993.

[H] L. Hocking, Optimal Control: An Introduction to the Theory with Applications, OxfordUniversity Press, 1991.

[I] R. Isaacs, Differential Games: A mathematical theory with applications to warfare and pursuit, control and optimization, Wiley, 1965 (reprinted by Dover in 1999).

[K] G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

[Kr] N. V. Krylov, Controlled Diffusion Processes, Springer, 1980.

[L-M] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, 1967.

[L] J. Lewin, Differential Games: Theory and methods for solving game problems with singular surfaces, Springer, 1994.

[M-S] J. Macki and A. Strauss, Introduction to Optimal Control Theory, Springer, 1982.

[O] B. K. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4th ed., Springer, 1995.

[O-W] G. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton UniversityPress.

[P-B-G-M] L. S. Pontryagin, V. G. Boltyanski, R. S. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, 1962.

[T] William J. Terrell, Some fundamental control theory I: Controllability, observability,  and duality, American Math Monthly 106 (1999), 705–719.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.