المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
Adjective ordering
2025-04-01
Zamparelli 2000 semantic argument
2025-04-01
Rijkhoff 2002 semantic argument
2025-04-01
أعمال «تجلات بليزر الثالث» 745–727 ق. م
2025-04-01
Borer 2005a semantic argument
2025-04-01
الملك شلمنصر الخامس 727–722 ق.م
2025-04-01

غرق فرعون واستخلاف بني اسرائيل
11-10-2015
التكبر والغرور من المهالك العظام
7-10-2014
الصفات المميزة لعوائل القراد الناقل للأمراض
20-1-2016
التحريض الأولي (العصبي)
12-2-2016
الضوء عامل مهم في مكافحة الادغال كيف؟
7-10-2021
النباتات الضارة Noxious Plants
5-1-2022

Graph Spectrum  
  
2884   09:28 صباحاً   date: 24-4-2022
Author : Biggs, N. L.
Book or Source : Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, 1993.
Page and Part : ...


Read More
Date: 4-5-2022 1615
Date: 23-4-2022 1899
Date: 21-4-2022 2885

Graph Spectrum

The set of graph eigenvalues of the adjacency matrix is called the spectrum of the graph. (But note that in physics, the eigenvalues of the Laplacian matrix of a graph are sometimes known as the graph's spectrum.) The spectrum of a graph G with n_i-fold degenerate eigenvalues lambda_i is commonly denoted Spec(G)=(lambda_1)^(n_1)(lambda_2)^(n_2)... (van Dam and Haemers 2003) or (lambda_1 lambda_2 ...; n_1 n_2 ...) (Biggs 1993, p. 8; Buekenhout and Parker 1998).

The product product_(k)(x-s_k) over the elements of the spectrum of a graph G is known as the characteristic polynomial of G, and is given by the characteristic polynomial of the adjacency matrix of G with respect to the variable x.

The largest absolute value of a graph's spectrum is known as its spectral radius.

The spectrum of a graph may be computed in the Wolfram Language using Eigenvalues[AdjacencyMatrix[g]]. Precomputed spectra for many named graphs can be obtained using GraphData[graph"Spectrum"].

A graph whose spectrum consists entirely of integers is known as an integral graph.

The maximum vertex degree of a connected graph G is an eigenvalue of G iff G is a regular graph.

Two nonisomorphic graphs can share the same spectrum. Such graphs are called cospectral. There seems to be no standard name for graphs known to be uniquely determined by their spectra. While they could conceivably be called spectrally unique, the term "determined by spectrum" has been used in practice (van Dam and Haemers 2003).


REFERENCES

Biggs, N. L. Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, 1993.

Buekenhout, F. and Parker, M. "The Number of Nets of the Regular Convex Polytopes in Dimension <=4." Disc. Math. 186, 69-94, 1998.

Cvetković, D. M.; Doob, M.; and Sachs, H. Spectra of Graphs: Theory and Applications, 3rd rev. enl. ed. New York: Wiley, 1998.Haemers, W. H. "Spectral Characterization of Graphs." In IPM Combinatorics II: Design Theory, Graph Theory, and Computational Methods. April 22-27, 2006, IPM, Tehran. http://www.ipm.ac.ir/combinatoricsII/abstracts/Haemers1.pdf.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 85, 1990.

van Dam, E. R. and Haemers, W. H. "Spectral Characterizations of Some Distance-Regular Graphs." J. Algebraic Combin. 15, 189-202, 2003.

Wilf, H. "Graphs and Their Spectra: Old and New Results." Congr. Numer. 50, 37-43, 1985.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.