المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

خطوات الشيطان
31-5-2020
زراعة السمك في حقول الأرز Fish Cultivation in rice fields
18-5-2017
مرونة الوراثة اللاجينية Epigenetic Plasticity
20-3-2018
الشيعة في العصر العباسي
20-6-2017
موقف القوانين من الشروط المتعلقة بالسكنى
11-2-2016
جماعة وقع عليهم حائط
14-4-2016

Cospectral Graphs  
  
2271   04:59 مساءً   date: 21-4-2022
Author : Biggs, N. L
Book or Source : Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press
Page and Part : ...


Read More
Date: 9-2-2016 1495
Date: 22-3-2022 1771
Date: 14-4-2022 1935

Cospectral Graphs

 

IsospectralGraphs

Cospectral graphs, also called isospectral graphs, are graphs that share the same graph spectrum. The smallest pair of isospectral graphs is the graph union C_4 union K_1 and star graph S_5, illustrated above, both of which have graph spectrum (-2)0^32 (Skiena 1990, p. 85). The first example was found by Collatz and Sinogowitz (1957) (Biggs 1993, p. 12). Many examples are given in Cvetkovic et al. (1998, pp. 156-161) and Rücker et al. (2002). The smallest pair of cospectral graphs is the graph union C_4 union K_1 and star graph S_5, illustrated above, both of which have graph spectrum (-2)0^32 (Skiena 1990, p. 85).

The following table summarizes some prominent named cospectral graphs.

n cospectral graphs
12 6-antiprism graph, quartic vertex-transitive graph Qt19
16 Hoffman graph, tesseract graph
16 (4,4)-rook graph, Shrikhande graph
25 25-Paulus graphs
26 26-Paulus graphs
28 Chang graphs, 8-triangular graph
70 Harries graph, Harries-Wong graph

Determining which graphs are uniquely determined by their spectra is in general a very hard problem. Only a small fraction of graphs are known to be so determined, but it is conceivable that almost all graphs have this property (van Dam and Haemers 2003).

The total number of n-node simple graphs that are isospectral to at least one other graph on n nodes for n=1, 2, ... are 0, 0, 0, 0, 1, 6, 110, 1722, 51039, ... (OEIS A099883). The numbers of pairs of isospectral simple graphs (excluding pairs that are parts of triples, etc.) are 0, 0, 0, 0, 1, 5, 52, 771, 21025, ... (OEIS A099881). Similarly, the numbers of triples of isospectral graphs (excluding triples that are parts of quadruples, etc.) are 0, 0, 0, 0, 0, 0, 2, 52, 2015, ... (OEIS A099882).


REFERENCES

Biggs, N. L. Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, p. 12, 1993.

Collatz, L. and Sinogowitz, U. "Spektren endlicher Grafen." Abh. Math. Sem. Univ. Hamburg 21, 63-77, 1957.

Cvetković, D. M.; Doob, M.; and Sachs, H. Spectra of Graphs: Theory and Applications, 3rd rev. enl. ed. New York: Wiley, 1998.

Godsil, C. D. and McKay, B. D. "Constructing Cospectral Graphs." Aeq. Math. 25, 257-268, 1982.

Haemers, W. H. and Spence, E. "Graphs Cospectral with Distance-Regular Graphs." Linear Multilin. Alg. 39, 91-107, 1995.

Rücker, C.; Rücker, G.; and Meringer, M. "Exploring the Limits of Graph Invariant- and Spectrum-Based Discrimination of (Sub)structures." J. Chem. Inf. Comp. Sci. 42, 640-650, 2002.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 85, 1990.

Sloane, N. J. A. Sequences A099881, A099882, A099883 in "The On-Line Encyclopedia of Integer Sequences."van Dam, E. R. and Haemers, W. H. "Spectral Characterizations of Some Distance-Regular Graphs." J. Algebraic Combin. 15, 189-202, 2003.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.