Read More
Date: 15-9-2021
![]()
Date: 2-10-2021
![]()
Date: 15-10-2021
![]() |
Also known as metric entropy. Divide phase space into -dimensional hypercubes of content
. Let
be the probability that a trajectory is in hypercube
at
,
at
,
at
, etc. Then define
![]() |
(1) |
where is the information needed to predict which hypercube the trajectory will be in at
given trajectories up to
. The Kolmogorov entropy is then defined by
![]() |
(2) |
The Kolmogorov entropy is related to Lyapunov characteristic exponents by
![]() |
(3) |
REFERENCES:
Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, p. 138, 1993.
Schuster, H. G. Deterministic Chaos: An Introduction, 3rd ed. New York: Wiley, p. 112, 1995.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تستعد لإطلاق الحفل المركزي لتخرج طلبة الجامعات العراقية
|
|
|