Read More
Date: 8-8-2021
1037
Date: 1-6-2021
1805
Date: 28-7-2021
2551
|
In elementary geometry, orthogonal is the same as perpendicular. Two lines or curves are orthogonal if they are perpendicular at their point of intersection. Two vectors and of the real plane or the real space are orthogonal iff their dot product . This condition has been exploited to define orthogonality in the more abstract context of the -dimensional real space .
More generally, two elements and of an inner product space are called orthogonal if the inner product of and is 0. Two subspaces and of are called orthogonal if every element of is orthogonal to every element of . The same definitions can be applied to any symmetric or differential k-form and to any Hermitian form.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|