Read More
Date: 6-7-2017
1483
Date: 5-6-2021
1851
Date: 1-8-2021
1282
|
Let be a real vector space (e.g., the real continuous functions on a closed interval , two-dimensional Euclidean space , the twice differentiable real functions on , etc.). Then is a real subspace of if is a subset of and, for every , and (the reals), and . Let be a homogeneous system of linear equations in , ..., . Then the subset of which consists of all solutions of the system is a subspace of .
More generally, let be a field with , where is prime, and let denote the -dimensional vector space over . The number of -D linear subspaces of is
(1) |
where this is the q-binomial coefficient (Aigner 1979, Exton 1983). The asymptotic limit is
(2) |
where
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
(Finch 2003), where is a Jacobi theta function and is a q-Pochhammer symbol. The case gives the q-analog of the Wallis formula.
REFERENCES:
Aigner, M. Combinatorial Theory. New York: Springer-Verlag, 1979.
Exton, H. q-Hypergeometric Functions and Applications. New York: Halstead Press, 1983.
Finch, S. R. "Lengyel's Constant." Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 316-321, 2003.
|
|
مخاطر عدم علاج ارتفاع ضغط الدم
|
|
|
|
|
اختراق جديد في علاج سرطان البروستات العدواني
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|