Subspace
المؤلف:
Aigner, M
المصدر:
Combinatorial Theory. New York: Springer-Verlag, 1979.
الجزء والصفحة:
...
5-8-2021
2019
Subspace
Let
be a real vector space (e.g., the real continuous functions
on a closed interval
, two-dimensional Euclidean space
, the twice differentiable real functions
on
, etc.). Then
is a real subspace of
if
is a subset of
and, for every
,
and
(the reals),
and
. Let
be a homogeneous system of linear equations in
, ...,
. Then the subset
of
which consists of all solutions of the system
is a subspace of
.
More generally, let
be a field with
, where
is prime, and let
denote the
-dimensional vector space over
. The number of
-D linear subspaces of
is
 |
(1)
|
where this is the q-binomial coefficient (Aigner 1979, Exton 1983). The asymptotic limit is
{c_eq^(n^2/4)[1+o(1)] for n even; c_oq^(n^2/4)[1+o(1)] for n odd, " src="https://mathworld.wolfram.com/images/equations/Subspace/NumberedEquation2.gif" style="height:50px; width:249px" /> |
(2)
|
where
(Finch 2003), where
is a Jacobi theta function and
is a q-Pochhammer symbol. The case
gives the q-analog of the Wallis formula.
REFERENCES:
Aigner, M. Combinatorial Theory. New York: Springer-Verlag, 1979.
Exton, H. q-Hypergeometric Functions and Applications. New York: Halstead Press, 1983.
Finch, S. R. "Lengyel's Constant." Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 316-321, 2003.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة