Read More
Date: 28-6-2017
![]()
Date: 26-9-2016
![]()
Date: 25-7-2021
![]() |
A Fréchet space is a complete and metrizable space, sometimes also with the restriction that the space be locally convex. The topology of a Fréchet space is defined by a countable family of seminorms. For example, the space of smooth functions on is a Fréchet space. Its topology is the C-infty topology, which is given by the countable family of seminorms,
![]() |
Because in this topology implies that
is smooth, i.e.,
![]() |
any Cauchy sequence has a limit in the space of smooth functions, i.e., it is a complete vector space.
REFERENCES:
Schaefer, H. H. Topological Vector Spaces. New York: Macmillan, 1966.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|