المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الفيضان الذي حدث في عهد (أوسركون الثالث)
2025-01-14
الفرعون (أوسركون الثالث)
2025-01-14
الملك (أوبوت)
2025-01-14
تماثيل عظماء الرجال في عصر (بادو باست)
2025-01-14
الفرعون بادو باست
2025-01-14
مقدمة الأسرة الثالثة والعشرون
2025-01-14

Bent Christiansen
17-1-2018
التوصيلية الكهربائية Electrical Conductivity
2024-05-08
Coinage
17-2-2022
الدودة القارضة السوداء Agrotis ipsilon
22-1-2016
دليل روائي يفصح عن علم الوراثة
11-7-2016
أهمية اللون
2024-06-05

Fréchet Space  
  
1856   06:06 مساءً   date: 2-8-2021
Author : Schaefer, H. H.
Book or Source : Topological Vector Spaces. New York: Macmillan, 1966.
Page and Part : ...


Read More
Date: 16-7-2021 1624
Date: 13-5-2021 3140
Date: 13-7-2021 1871

Fréchet Space

A Fréchet space is a complete and metrizable space, sometimes also with the restriction that the space be locally convex. The topology of a Fréchet space is defined by a countable family of seminorms. For example, the space of smooth functions on [0,1] is a Fréchet space. Its topology is the C-infty topology, which is given by the countable family of seminorms,

 ||f||_alpha=sup|D^alphaf|.

Because f_n->f in this topology implies that f is smooth, i.e.,

 D^alphaf_n->D^alphaf,

any Cauchy sequence has a limit in the space of smooth functions, i.e., it is a complete vector space.


REFERENCES:

Schaefer, H. H. Topological Vector Spaces. New York: Macmillan, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.