Species
المؤلف:
Bergeron, F.; Labelle, G.; and Leroux, P.
المصدر:
Combinatorial Species and Tree-Like Structures. Cambridge, England: Cambridge University Press
الجزء والصفحة:
p. 5,
29-7-2021
1325
Species
A species of structures is a rule
which
1. Produces, for each finite set
, a finite set
,
2. Produces, for each bijection
, a function
![F[sigma]:F[U]->F[V].](https://mathworld.wolfram.com/images/equations/Species/NumberedEquation1.gif) |
(1)
|
The functions
should further satisfy the following functorial properties:
1. For all bijections
and
,
![F[tau degreessigma]=F[tau] degreesF[sigma],](https://mathworld.wolfram.com/images/equations/Species/NumberedEquation2.gif) |
(2)
|
2. For the identity map
,
![F[Id_(U)]=Id_(F[U]).](https://mathworld.wolfram.com/images/equations/Species/NumberedEquation3.gif) |
(3)
|
An element
is called an
-structure on
(or a structure of species
on
). The function
is called the transport of
-structures along
.
REFERENCES:
Bergeron, F.; Labelle, G.; and Leroux, P. Combinatorial Species and Tree-Like Structures. Cambridge, England: Cambridge University Press, p. 5, 1998.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة