Read More
Date: 6-6-2021
2016
Date: 29-7-2021
1781
Date: 21-7-2021
1132
|
Given a subset and a real function which is Gâteaux differentiable at a point , is said to be pseudoconvex at if
Here, denotes the usual gradient of .
The term pseudoconvex is used to describe the fact that such functions share many properties of convex functions, particularly with regards to derivative properties and finding local extrema. Note, however, that pseudoconvexity is strictly weaker than convexity as every convex function is pseudoconvex though one easily checks that is pseudoconvex and non-convex.
Similarly, every pseudoconvex function is quasi-convex, though the function is quasi-convex and not pseudoconvex.
A function for which is pseudoconvex is said to be pseudoconcave.
REFERENCES:
Borwein, J. and Lewis, A. Convex Analysis and Nonlinear Optimization: Theory and Examples. New York: Springer Science+Business Media, 2006.
|
|
كل ما تود معرفته عن أهم فيتامين لسلامة الدماغ والأعصاب
|
|
|
|
|
ماذا سيحصل للأرض إذا تغير شكل نواتها؟
|
|
|
|
|
جامعة الكفيل تناقش تحضيراتها لإطلاق مؤتمرها العلمي الدولي السادس
|
|
|