Read More
Date: 3-8-2021
1473
Date: 12-6-2021
1744
Date: 6-7-2017
1481
|
Given a subset and a real function which is Gâteaux differentiable at a point , is said to be pseudoconvex at if
Here, denotes the usual gradient of .
The term pseudoconvex is used to describe the fact that such functions share many properties of convex functions, particularly with regards to derivative properties and finding local extrema. Note, however, that pseudoconvexity is strictly weaker than convexity as every convex function is pseudoconvex though one easily checks that is pseudoconvex and non-convex.
Similarly, every pseudoconvex function is quasi-convex, though the function is quasi-convex and not pseudoconvex.
A function for which is pseudoconvex is said to be pseudoconcave.
REFERENCES:
Borwein, J. and Lewis, A. Convex Analysis and Nonlinear Optimization: Theory and Examples. New York: Springer Science+Business Media, 2006.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|