Injection
المؤلف:
Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H.
المصدر:
VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold
الجزء والصفحة:
p. 370
22-7-2021
1910
Injection

Let
be a function defined on a set
and taking values in a set
. Then
is said to be an injection (or injective map, or embedding) if, whenever
, it must be the case that
. Equivalently,
implies
. In other words,
is an injection if it maps distinct objects to distinct objects. An injection is sometimes also called one-to-one.
A linear transformation is injective if the kernel of the function is zero, i.e., a function
is injective iff
.

A function which is both an injection and a surjection is said to be a bijection.
In the categories of sets, groups, modules, etc., a monomorphism is the same as an injection, and is used synonymously with "injection" outside of category theory.
REFERENCES:
Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, p. 370, 1989.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة