Dense
المؤلف:
Bailey, D. H. and Crandall, R. E.
المصدر:
"On the Random Character of Fundamental Constant Expansions." Exper. Math. 10
الجزء والصفحة:
...
18-7-2021
2118
Dense
A set
in a first-countable space is dense in
if
, where
is the set of limit points of
. For example, the rational numbers are dense in the reals. In general, a subset
of
is dense if its set closure
.
A real number
is said to be
-dense iff, in the base-
expansion of
, every possible finite string of consecutive digits appears. If
is
-normal, then
is also
-dense. If, for some
,
is
-dense, then
is irrational. Finally,
is
-dense iff the sequence
{b^nalpha}" src="https://mathworld.wolfram.com/images/equations/Dense/Inline23.gif" style="height:15px; width:34px" /> is dense (Bailey and Crandall 2001, 2003).
REFERENCES:
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001.
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة