Read More
Date: 12-6-2021
1746
Date: 28-7-2021
1597
Date: 11-7-2021
1599
|
A set in a first-countable space is dense in if , where is the set of limit points of . For example, the rational numbers are dense in the reals. In general, a subset of is dense if its set closure .
A real number is said to be -dense iff, in the base- expansion of , every possible finite string of consecutive digits appears. If is -normal, then is also -dense. If, for some , is -dense, then is irrational. Finally, is -dense iff the sequence is dense (Bailey and Crandall 2001, 2003).
REFERENCES:
Bailey, D. H. and Crandall, R. E. "On the Random Character of Fundamental Constant Expansions." Exper. Math. 10, 175-190, 2001.
Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|