تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Generalized Reeb Component
المؤلف:
Eliashberg, Y. M. and Thurston, W. P
المصدر:
Confoliations. Providence, RI: Amer. Math. Soc., 1998.
الجزء والصفحة:
...
7-7-2021
1551
Generalized Reeb Component
Given a compact manifold and a transversely orientable codimension-one foliation
on
which is tangent to
, the pair
is called a generalized Reeb component if the holonomy groups of all leaves in the interior
are trivial and if all leaves of
are proper. Generalized Reeb components are obvious generalizations of Reeb components.
The introduction of the generalized version of the Reeb component facilitates the proof of many significant results in the theory of 3-manifolds and of foliations. It is well-known that generalized Reeb components are transversely orientable and that a manifold admitting a generalized Reeb component also admits a nice vector field
(Imanishi and Yagi 1976). Moreover, given a generalized Reeb component
,
is a fibration over
.
Like many notions in geometric topology, the generalized Reeb component can be presented in various contexts. One source describes a generalized Reeb component on a closed 3-manifold with foliation
to be a submanifold
of maximal dimension which is bounded by tori
{T_alpha}" src="https://mathworld.wolfram.com/images/equations/GeneralizedReebComponent/Inline16.gif" style="height:15px; width:25px" /> such that the orientation of these tori as leaves of
is the same as (or simultaneously opposite to) their orientation as the boundary components of
(Eliashberg and Thurston 1998). Framed in this way, generalized Reeb components are shown to have deep connections to various notions in foliation theory, e.g., in presenting an existence criterion for a closed 3-manifold
to admit a taut foliation.
REFERENCES:
Eliashberg, Y. M. and Thurston, W. P. Confoliations. Providence, RI: Amer. Math. Soc., 1998.
Goodman, S. "Closed Leaves in Foliations of Codimension One." Comm. Math. Helv. 50, 383-388, 1975.
Imanishi, H. and Yagi, K. "On Reeb Components." J. Math. Kyoto Univ. 16, 313-324, 1976.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
