تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Homology
المؤلف:
Goldberg, S. I.
المصدر:
Curvature and Homology, enl. ed. New York: Dover, 1998.
الجزء والصفحة:
...
30-5-2021
2196
Homology
Homology is a concept that is used in many branches of algebra and topology. Historically, the term "homology" was first used in a topological sense by Poincaré. To him, it meant pretty much what is now called a bordism, meaning that a homology was thought of as a relation between manifolds mapped into a manifold. Such manifolds form a homology when they form the boundary of a higher-dimensional manifold inside the manifold in question.
To simplify the definition of homology, Poincaré simplified the spaces he dealt with. He assumed that all the spaces he dealt with had a triangulation (i.e., they were "simplicial complexes"). Then instead of talking about general "objects" in these spaces, he restricted himself to subcomplexes, i.e., objects in the space made up only on the simplices in the triangulation of the space. Eventually, Poincaré's version of homology was dispensed with and replaced by the more general singular homology. Singular homology is the concept mathematicians mean when they say "homology."
In modern usage, however, the word homology is used to mean homology group. For example, if someone says " did
by computing the homology of
," they mean "
did
by computing the homology groups of
." But sometimes homology is used more loosely in the context of a "homology in a space," which corresponds to singular homology groups.
![]() |
![]() |
An example of a homology is the degree-one integral homology for a domain in . In this case, a homology class is represented by a finite sum or difference of closed loops. For example, consider the loops in the twice punctured plane
{(0,0),(1,0)}" src="https://mathworld.wolfram.com/images/equations/Homology/Inline8.gif" style="height:17px; width:109px" />, illustrated above.
The equality holds in homology because the difference is the homology boundary of a compactly supported region. The homology of a space is an algebraic object which reflects the topology. The algebraic tools used are called homological algebra, and in that language, the homology is a derived functor, the homology of a long exact sequence.
Singular homology groups of a space measure the extent to which there are finite (compact) boundaryless gadgets in that space, such that these gadgets are not the boundary of other finite (compact) gadgets in that space.
A generalized homology or cohomology theory must satisfy all of the Eilenberg-Steenrod Axioms with the exception of the dimension axiom.
REFERENCES:
Goldberg, S. I. Curvature and Homology, enl. ed. New York: Dover, 1998.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
