تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Zones of Popularity on the Attractor
المؤلف:
Garnett P. Williams
المصدر:
Chaos Theory Tamed
الجزء والصفحة:
195
14-3-2021
2272
Zones of Popularity on the Attractor
The fourth orderly structure of chaos is zones of relatively greater popularity on each chaotic attractor. These are zones a chaotic system is more likely to visit during its evolution. On the graphs of Figures 1 and 2, areas the trajectory visits the most are proportionally darker. The darkest zones are most likely to be visited, for a given k. In contrast, the trajectory never goes to white zones at all. The zones of greater popularity could provide some guidance in devising a statistical theory for accurately predicting the likelihood of xt taking on a particular value (Jensen 1987). A fifth orderly feature of chaos is the fractal structure.
All this regularity indicates that order is a basic ingredient in chaos. That's why some people look upon chaos as order disguised as disorder. Some authors believe that pure chaos sets in only when the control parameter is at a maximum (such as k=4 in the logistic equation).
Figure 1: Chaotic domain of logistic equation. Computergenerated graphics by Sebastian Kuzminsky.
Figure 2: Window consisting of a period-three cycle, occurring at about k = 1.76 for the quadratic equation (after Grebogi et al. 1987). Computer-generated graphics by Sebastian Kuzminsky.
الاكثر قراءة في الميكانيك
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
