المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
Beyond Key Stage 4
2025-04-13
Transition plans for children with Statements of Special Educational Needs
2025-04-13
Transition from KS3 to KS4
2025-04-13
The transition from KS2 to KS3
2025-04-13
The transition from Key Stage 1 to Key Stage 2
2025-04-13
The transition from Foundation Stage to Key Stage 1
2025-04-13

الكيمياء المجسمة والنشاط الضوئي
2023-08-02
نوعية المياه الجوفية تغذية المياه الجوفية
8-1-2016
ورود موكب الاباء الى الكوفة
7-04-2015
CpG Islands
15-12-2017
الشباب العراقي بين التجهيل والاهمال
29/9/2022
اول جمعة في الاسلام
18-11-2014

Swinnerton-Dyer Conjecture  
  
877   03:35 مساءً   date: 12-7-2020
Author : Birch, B. and Swinnerton-Dyer, H
Book or Source : "Notes on Elliptic Curves. II." J. reine angew. Math. 218
Page and Part : ...


Read More
Date: 7-10-2020 830
Date: 21-9-2020 844
Date: 27-9-2020 2159

Swinnerton-Dyer Conjecture

In the early 1960s, B. Birch and H. P. F. Swinnerton-Dyer conjectured that if a given elliptic curve has an infinite number of solutions, then the associated L-series has value 0 at a certain fixed point. In 1976, Coates and Wiles showed that elliptic curves with complex multiplication having an infinite number of solutions have L-series which are zero at the relevant fixed point (Coates-Wiles theorem), but they were unable to prove the converse. V. Kolyvagin extended this result to modular curves.


REFERENCES:

Birch, B. and Swinnerton-Dyer, H. "Notes on Elliptic Curves. II." J. reine angew. Math. 218, 79-108, 1965.

Cipra, B. "Fermat Prover Points to Next Challenges." Science 271, 1668-1669, 1996.

Clay Mathematics Institute. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/.

Ireland, K. and Rosen, M. "New Results on the Birch-Swinnerton-Dyer Conjecture." §20.5 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 353-357, 1990.

Mazur, B. and Stevens, G. (Eds.). p-Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture. Providence, RI: Amer. Math. Soc., 1994.

Wiles, A. "The Birch and Swinnerton-Dyer Conjecture." https://www.claymath.org/millennium/Birch_and_Swinnerton-Dyer_Conjecture/BSD.pdf.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.